

Università di Pisa

ALGEBRA LINEARE E STATISTICA I

MARCO FRANCIOSI

Anno accademico CdS Codice CFU 2022/23 INGEGNERIA GESTIONALE 788AA 12

ModuliSettore/iTipoOreDocente/iALGEBRA LINEAREMAT/03LEZIONI60MARCO FRANCIOSISTATISTICA IMAT/06LEZIONI60ANDREA AGAZZI

Obiettivi di apprendimento

Conoscenze

ALGEBRA LINEARE: Al termine del corso lo studente avrà acquisito conoscenze in merito agli strumenti e alle metodologie riguardanti: calcolo con numeri complessi; nozioni base su spazi vettoriali (di dimensione arbitraria); nozioni base di algebra lineare; calcolo con le matrici; calcolo differenziale e integrale per funzioni di più variabili; teoria elementare di curve e superfici, e di calcolo vettoriale.

STATISTICA: Conoscenze relative ai concetti di base del calcolo delle probabilità (variabili aleatorie, funzioni i distribuzione, valore atteso), analizzare poi le applicazioni alle analisi statistiche (significatività dei test, errori, regressione e correlazione).

Modalità di verifica delle conoscenze

Durante la prova scritta (4 ore), lo studente deve mostrare la propria conoscenza degli argomenti del corso rispondendo correttamente ad un test a risposta multipla, e svolgendo esercizi. Durante la prova orale, lo studente deve mostrare la propria conoscenza degli argomenti del corso esponendo correttamente le definizioni, i teoremi e le dimostrazioni, evidenziando comprensione degli argomenti.

I metodi di verifica sono:

- · esame finale scritto
- · esame finale orale
- test a risposta multipla ed esercizi da svolgere a casa

Lo studente può scegliere di sostenere separatamente l'esame relativo alla parte di Algebra Lineare e quello relativo alla parte di Statistica.

Capacità

ALGEBRA LINEARE: Al termine del corso lo studente sarà in grado di trattare in autonomia matrici, sistemi lineari, numeri complessi, problemi di ottimizzazione vincolata, e acquisirà familiarità con problematiche di tipo multivariato.

STATISTICA: Insegnare l'utilizzo corretto e consapevole degli strumenti matematici introdotti, in vista del loro impiego nello studio, nell'analisi e nell'approfondimento dei fenomeni fisici e chimici, e nella risoluzione dei problemi dell'ingegneria.

Modalità di verifica delle capacità

Saranno assegnati settimanalmente esercizi sugli argomenti svolti, per consentire allo studente di verificare il proprio livello di comprensione.

Comportamenti

Lo studente sarà pronto a studiare modelli in più variabili di fenomeni di natura economica, fisica, biologica, ecc, sviluppando capacità di studio individuale e in gruppo.

Modalità di verifica dei comportamenti

Lo studente verificherà la propria capacità di svolgimento degli esercizi assegnati settimanalmente confrontandosi con i colleghi e con il docente.

Prerequisiti (conoscenze iniziali)

• Ottima conoscenza della matematica di base delle scuole superiori: polinomi, trigonometria, equazioni e disequazioni.

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

• Calcolo differenziale e integrale per funzioni in una variabile

Indicazioni metodologiche

Le lezioni sono frontali. Per imparare la materia si richiede

- · frequenza delle lezioni frontali
- partecipazione alle discussioni in aula
- studio individuale
- · lavoro di gruppo

La frequenza non è obbligatoria

Programma (contenuti dell'insegnamento)

ALGEBRA LINEARE: numeri complessi (operazioni con i numeri complessi, rappresentazione trigonometrica, equazioni di base); spazi e sottospazi vettoriali (definizioni principali, teorema di Grassmann); applicazioni lineari; nucleo e immagine; matrice associata ad un'applicazione lineare; determinanti; autovalori ed autovettori; prodotti scalari e matrici simmetriche; funzioni di più variabili; differenziale e derivate; teorema delle funzioni implicite; minimi e massimi; curve e superfici; integrali multipli; integrali curvilinei e di superficie; nozioni base di calcolo vettoriale. STATISTICA: Introduzione alla statistica descrittiva, Definizione di Media, Varianza, Deviazione standard, Covarianza e correlazione. Introduzione alla statistica inferenziale, Distribuzioni di probabilità discrete e continue. Esempi importanti. Valore atteso, Varianza e loro proprietà. Variabili aleatorie, Legge dei grandi numeri, Teorema del limite centrale, Stimatori, Intervalli di confidenza, Test statistici.

Bibliografia e materiale didattico

MARCO ABATE- CHIARA DE FABRITIIS "Geometria analitica con elementi di algebra lineare" Ed. McGraw-HILL MARCO FRANCIOSI "Esercizi di Algebra lineare" Edizioni Esculapio GIUSTI ENRICO, Analisi Matematica II, Bollati Boringhieri

Indicazioni per non frequentanti

Consultare le informazioni sul sito del corso.

Modalità d'esame

L'esame consiste in:

- · prova scritta di Algebra Lineare
- · prova scritta di Statistica
- prova orale

Lo studente può affrontare le due prove scritte in un unico giorno o separatamente.

Altri riferimenti web

http://pagine.dm.unipi.it/~a008702/corso20.html

Note

Nessuna

Ultimo aggiornamento 08/08/2022 13:41