

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

FISICA CON ELEMENTI DI MATEMATICA

ROSA POGGIANI

Academic year 2022/23
Course FARMACIA

Code 311BB

Credits 6

Modules Area Type Hours Teacher(s)
FISICA CON ELEMENTI DI FIS/03 LEZIONI 42 ROSA POGGIANI

MATEMATICA

Obiettivi di apprendimento

Conoscenze

Il corso mira, attraverso lo studio dei concetti matematici di base e della fisica classica, a fornire agli studenti e alle studentesse i metodi di lavoro per affrontare le problematiche scientifiche che potranno incontrare nella loro attivita' professionale. Nel corso verranno discussi esempi di applicazione della fisica alle scienze della vita.

Capacità

Al termine del corso gli studenti e le studentesse sapranno applicare le metodologie della fisica alla futura attivita' professionale

Prerequisiti (conoscenze iniziali)

Conoscenze di Matematica e Fisica delle Scuole Superiori

Indicazioni metodologiche

Lezioni frontali alla lavagna

Programma (contenuti dell'insegnamento)

Trigonometria. Radiante. Limiti. Funzioni. Rappresentazione grafica di funzioni. Derivate. Integrali.

Grandezze fisiche. Sistemi di unita' di misura. Sistema Internazionale. Equazioni dimensionali.

Vettori. Algebra dei vettori.

Cinematica. Velocita'. Accelerazione. Moto uniforme. Moto uniformemente accelerato. Moto circolare. Moto armonico.

Forze. Prima, seconda e terza legge di Newton. Forza peso. Forza gravitazionale. Forza elastica. Attrito.

Lavoro. Energia cinetica. Forze conservative ed energia potenziale. Principio di conservazione dell'energia.

Energia potenziale gravitazionale ed elastica. Potenza.

Quantita' di moto. Cenni di dinamica e statica del corpo rigido. Applicazioni alla biologia.

Concetto di pressione. Legge di Stevino, principio di Pascal, legge di Archimede.

Fluidi ideali: portata, equazione di continuita', teorema di di Bernoulli. Cenni di fluidi non ideali. Applicazioni della meccanica dei fluidi alla biologia.

Temperatura. Principio zero della termodinamica. Sistemi termodinamici. Trasformazioni termodinamiche. Processi reversibili ed irreversibili. Lavoro meccanico e calore. Primo principio della termodinamica ed energia interna. Transizioni di fase. Trasmissione del calore. Gas ideali. Secondo principio della termodinamica. Macchine termiche. Cicli. Entropia. Applicazione della termodinamica alla biologia.

Carica elettrica. Legge di Coulomb. Campo elettrostatico. Potenziale elettrostatico. Conduttori e isolanti. Condensatori. Corrente elettrica, legge di Ohm, effetto Joule. Campo magnetico. Forza di Lorentz.

Campi magnetici di fili, spire, solenoidi. Magnetismo nella materia. Forze fra fili percorsi da corrente. Legge di Faraday-Neumann. Elettromagnetismo e biologia.

Onde trasversali e longitudinali. Onde: frequenza, lunghezza d'onda, energia, intensita'. Interferenza e diffrazione delle onde. Suono. Scala dei decibel. Effetto Doppler.

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

Onde elettromagnetiche. Luce: riflessione, trasmissione, assorbimento, interferenza, diffrazione, polarizzazione. Ottica geometrica: riflessione, rifrazione. Formazione di immagini: specchi, lenti. Occhio umano. Microscopio. Radioattivita'.

Bibliografia e materiale didattico

Fisica

G. Bellini, R. Cerbino, G. Manuzio, F. Marzari, L. Repetto, L. Zennaro, Fisica per Medicina con applicazioni fisiologiche, diagnostiche e terapeutiche

F. Borsa, A. Lascialfari, Principi di fisica per indirizzo biomedico e farmaceutico

Elementi di matematica:

R. Davidson, Metodi matematici per un corso introduttivo di fisica

V. Villani, G. Gentili, Matematica. Comprendere e interpretare fenomeni delle scienze della vita

Modalità d'esame

Modalita' d'esame saranno definite

Ultimo aggiornamento 06/09/2022 16:25