Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

FISICA E STATISTICA MEDICA

ANDREA VERLICCHI

Anno accademico CdS Codice CFU 2023/24 MEDICINA E CHIRURGIA 001BF 9

Moduli Settore/i Tipo Ore Docente/i

FISICA MEDICA FIS/07 LEZIONI 75 ANDREA VERLICCHI

STATISTICA MEDICA MED/01 LEZIONI 37.50 MICHELA MARINARI

Obiettivi di apprendimento

Conoscenze

Corso Integrato di Fisica e Statistica Medica
CORE CURRICULUM
MODULO DI FISICA MEDICA
Introduzione

· Grandezze fisiche, misure, errori.

Cinematica

- Cinematica del punto materiale: velocita' media, velocita' istantanea, accelerazione. Caduta libera.
- Algebra vettoriale: somma, differenza, scomposizione di vettori. Moto di un proiettile. Moto parabolico. Prodotto scalare e vettoriale. Prodotto bivettore e misto.

Dinamica

- Dinamica: le tre leggi del moto di Newton. Peso e forza di gravita' Reazioni vincolari. Piano inclinato. Forza di attrito. Forza elastica.
- Il moto circolare: cinematica e dinamica. Forza di gravitazione universale. Satelliti artificiali. Leggi di Keplero.
- Lavoro ed Energia, Energia cinetica, Energia Potenziale, Forze onservative e forze non conservative. Conservazione dell'energia.
- Quantita' di moto. Conservazione della quantita' di moto. Urti. Urti elastici in una dimensione. Urti anelastici. Centro di massa.
- Moto rotatorio. Grandezze angolari. Momento d'inerzia. Dinamica rotazionale. Energia cinetica rotazionale. Conservazione del momento angolare.

Statica

• Condizioni di Equilibrioper un corpo rigido. Problemi di Statica.

Fluidi

• I fluidi. Densita' assoluta e densita' relativa. Pressione. Principio di Pascal. Legge di Archimede. Portata ed equazione di continuità. Equazione di Bernoulli. Viscosità. Equazione di Poiseuille.

Onde

- Vibrazioni e onde. Il moto armonico. Il pendolo semplice. Moto armonico smorzato. Onde longitudinali e trasversali. Intensità.
- Onde sonore. Corde vibranti. Intensita' del suono: il decibel. L'orecchio e la sua risposta. Effetto Doppler acustico.
- Calore
- Propagazione del calore: convezione, conduzione, irraggiamento.
- Dissipazione del calore del corpo umano,

Termodinamica

- Equilibrio termico e principio zero della termodinamica. Termometri.Temperatura assoluta. Leggi dei gas perfetti.
- Il calore come trasferimento di energia. Energia interna e calore specifico. Esperienza di Joule. Calorimetria e passaggi di stato. Calore latente. Trasmissione del calore.
- Trasformazioni termodinamiche. Il primo principio della termodinamica. Trasformazioni cicliche e ciclo di Carnot. Il secondo

DICALLY ALLS

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

- principio della termodinamica. Macchine termiche e frigorifere.
- · Secondo principio.

Elettrostatica

- Carica elettrica. Forza di Coulomb. Campo elettrico e linee di campo. Prorpietà dei conduttori.
- Potenziale elettrico. Energia potenziale elettrostatica. Linee equipotenziali. Esempi di potenziali. I dielettrici:cenni.

Circuiti elettrici

- L'intensita' di corrente elettrica. Legge di Ohm.
- · Resistenze in serie e parallelo.
- · La resistenza elettrica del corpo umano.
- · Circuti domestici di sicurezza

Magnetismo

- · Forze magnetiche. Forza di Lorentz.
- · Sinctrtrone e spettrometro di massa.

MODULO DI STATISTICA MEDICA

Introduzione

• Il ruolo della Biostatistica. Statistica descrittiva e inferenziale, popolazioni e campioni, dati sperimentali e dati osservazionali.

Statistica descrittiva

- Parametri e variabili, tipi di variabili e scale di misura, qualità dei dati.
- Distribuzioni di frequenza, rapporti statistici, misure epidemiologiche fondamentali, misure di tendenza centrale e misure di variabilità, rappresentazioni grafiche.

Probabilità

• Definizione, le proprietà elementari, operazioni sulle probabilità, il teorema di Bayes, sensibilità e specificità. Variabili casuali e distribuzioni di probabilità (binomiale, poisson, gaussiana).

Stime intervallari

- Test delle ipotesi e stime. Distribuzione delle medie campionarie, intervalli di confidenza per la stima di medie e di proporzioni. **Test delle ipotesi**
- Logica di funzionamento di un test statistico, ipotesi nulla ed ipotesi alternativa, errori di 1° e 2° tipo, potenza di un test statistico. **Confronti fra due gruppi**
 - Confronto statistico di due medie e di due proporzioni per campioni indipendenti e appaiati.

ANOVA

• Confronto fra più di due medie: analisi di varianza a un criterio di classificazione e confronti post-hoc.

Correlazione e regressione

• Il modello, i coefficienti e relativa inferenza.

Test non parametrici

 Test di Mann-Whitney per due campioni indipendenti, test di Wilcoxon per dati appaiati, test di Kruskall-Wallis e test di Dunn per confronti post-hoc.

Modalità di verifica delle conoscenze

Esercitazioni scritte durante il corso.

Capacità

Risoluzione di semplici applicazioni della leggi della Meccanica al moto di corpi puntiformi e non, con riferimenti alla anatomia animale e umana. Conoscenza di base dei concetti di elettromagnetismo e di sicurezza elettrica.

Comportamenti

Concetto e valutazione dell'errore di misura in senso fisico. Applicazione dei principi generali della Fisica nella valutazione di sistemi dinamici o

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

statici relativamente complessi.

Prerequisiti (conoscenze iniziali)

Conoscenze algebrichee trogonometriche di base. Concetti di analisi matematica.

Programma (contenuti dell'insegnamento)

MODULO DI FISICA MEDICA

Grandezze fisiche e unità di misura di spazio, tempo, massa. Significato di cifra significativa e valutazione dell'errore nel caso di semplici operazioni aritmetiche.

Cinematica: Moto unidimensionale: definizione di velocità media e istantanea e significato geometrico nel grafico S/T.

Definizione di accelerazione media. Moto uniformemente accelerato nel caso unidimensionale: grafici S/T e V/T.

Vettori: definizione geometrica. Somma e differenza con il metodo del parallelogramma e del poligono. Componenti e versori. Prodotto di un vettore per uno scalare: componenti cartesiane. Definizione di spostamento tra due punti come differenza tra due vettori posizione. Prodotto scalare tra vettori: espressione geometrica e cartesiana. Prodotto vettoriale.

Definizione vettoriale di velocità media e limite per la velocità vettoriale istantanea. Definizione di accelerazione vettoriale. Moto bidimensionale. Moto parabolico: gittata e quota massima. Accelerazione tangenziale e accelerazione normale. Moti relativi. Velocità relativa per sistemi di riferimento in moto rettilineo uniforme.

Dinamica del punto materiale: concetto di forza. Forza come vettore. Principio d'inerzia e leggi di Newton. Applicazioni della seconda legge di Newton al moto circolare uniforme e non. Attrito statico e dinamico. Lavoro di una forza. Forza elastica e legge di Hooke. Teorema dell'energia cinetica. Forze conservative e definizione di energia potenziale: energia potenziale della forza peso ed energia potenziale elastica.

Conservazione dell'energia meccanica E = K + U. Teorema dell'energia meccanica in presenza di forze non conservative. Quantità di moto. Prima equazione cardinale della Meccanica. Impulso e teorema dell'impulso. Urti elastici e perfettamente anelastici. Forze interne ed esterne. Conservazione della quantità di moto per un sistema isolato.

Sistemi di masse puntiformi: definizione di centro di massa, di velocità e accelerazione del centro di massa.

Sistemi non inerziali: la forza centrifuga e cenni alle altre forze apparenti.

Momento della quantità di moto e momento di una forza: 2° equazione della Meccanica. Conservazione del momento della quantità di moto. Campo gravitazionale: legge di gravitazione universale di Newton. Energia potenziale gravitazionale. Calcolo dell'energia di un satellite in orbita circolare. Leggi di Keplero e loro derivazione dalla legge di gravitazione e dai principi di conservazione: energia e momento della quantità di moto. Velocità di fuga.

Moto armonico: concetti generali e applicazione alla molla. Energia del moto armonico. Pendolo e pendolo composto: approssimazione per piccole oscillazioni.

<u>Corpo rigido</u>: momento d'inerzia con semplici esempi di calcolo. Teorema di Huygens-Steiner o degli assi paralleli (senza dimostrazione). Energia totale come somma dell'energia cinetica di traslazione e di rotazione (teorema di König). Puro rotolamento. Seconda equazione cardinale applicata a corpi girevoli attorno ad un asse fisso; momento assiale: t = la. Statica del corpo rigido: condizioni di equilibrio. <u>Propagazione per onde</u>: definizioni. Onde trasversali e longitudinali. Equazione delle onde progressive/regressive e stazionarie. Effetto Doppler acustico.

Meccanica dei fluidi

Pressione e unità di misura della pressione: il Pascal e l'atmosfera. Statica dei fluidi: legge di Stevino e spinta di Archimede. Legge di Pascal, applicazione al torchio idraulico. Teorema di Bernoulli e derivazione del teorema di Torricelli.
La circolazione sanguigna nel sangue (appunti disponibili)1.

Termodinamica

<u>Calorimetria</u>: temperatura e termometri; scala Celsius. Temperatura assoluta: il Kelvin. Dilatazioni termiche. Definizione di caloria; calore specifico e capacità termica. Calore molare. Principio zero della Termodinamica (equilibrio termico tra corpi). Calori latenti e cambiamenti di stato. Calorimetri (cenni). Equivalente meccanico del calore. Primo principio della Termodinamica per trasformazioni cicliche. La propagazione del calore (appunti disponibili)2.

Gas perfetti: definizione di gas perfetto ed equazione di stato. Trasformazioni reversibili quasi staticche di un gas perfetto: isobara, isocora, isoterma e adiabatica con relativa rappresentazione grafica. Piano di Clapeyron (P-V). Lavoro di un gas perfetto e significato grafico in un piano di Clapeyron. Relazione di Mayer (Cp = Cv + R). Energia interna e funzioni di stato. Primo principio della Termodinamica e sua forma differenziale. Cicli termodinamici applicati ai gas perfetti. Ciclo di Carnot e sua rilevanza teorica. Rendimento di una macchina termica a ciclo diretto (orario); rendimento di una macchina ideale a ciclo di Carnot. Efficienza di una macchina frigorifera (ciclo indiretto o antiorario). Teorema di Carnot (senza dimostrazione). Reversibilità ed irreversibilità: disuguaglianza di Clausius. Il secondo principio della Termodinamica. Principio di Clausius e Kelvin e dimostrazione della loro equivalenza.

Elettromagnetismo

<u>Campi elettrici</u>: Linea di forza di un campo vettoriale: caratteristiche generali. Legge di Coulomb. Principio di sovrapposizione lineare e sua applicazione al caso di cariche puntiformi: dipolo elettrico. Definizione di differenza di potenziale. Potenziale di una carica puntiforme: applicazione al caso di una spira circolare. Conduttori: proprietà generali. Il campo elettrico nella materia: cenni descrittivi. Macchine elettrostatiche: elettroforo di Volta e generatore di Van de Graaff.

Corrente elettrica: corrente continua e legge di Ohm; definizione di resistività. Potenza dissipata su una resistenza. Principi di Kirchhoff. Resistenze in serie ed in parallelo. Correnti alternate: definizione di corrente e potenziale efficace. Cenni sulla sicurezza elettrica. Campo magnetico: descrizione delle proprietà generali di un magnete. Esperienza di Oersted. La forza di Lorentz. Sincrotrone e spettrometro di massa come esempi dell'applicazione della forza di Lorentz. L'elettron-volt. La forza di Ampere su un filo percorso da corrente. Unità di misura del campo magnetico: tesla e gauss. Unità di misura della corrente: definizione dell'ampere.

L'induzione magnetica: le esperienze di Faraday. Legge di Faraday-Lenz. Definizione di flusso (di un campo vettoriale) attraverso una superficie. Applicazioni della legge di Faraday e calcolo di correnti indotte.

3/4

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

Applicazioni tecnologiche dell'induzione magnetica: il motore elettrico e il trasformatore. Cenni ai superconduttori come caso limite di conservazione del flusso magnetico.

Onde elettromagnetiche: Proprietà generali delle onde elettromagnetiche nel vuoto. Lo spettro elettromagnetico (classificazione per sommi capi).

MODULO DI STATISTICA MEDICA

Il modulo Statistica copre gli elementi di base della statistica descrittiva e inferenziale, indirizzando le conoscenze acquisite verso i problemi che il futuro medico troverà frequentemente nella letteratura biomedica.

Bibliografia e materiale didattico

Per il Modulo di Fisica GIANCOLI - FISICA con fisica moderna - Il edizione - Casa Editrice Ambosiana. DAVID HALLIDAY, ROBERT RESNICK, JEARL WALKER- Fondamenti di Fisica - VI ed. - Casa Editrice Ambrosiana. Appunti del docente.

Per il modulo Statistica: ARMITAGE, BERRY: Statistica Medica, Mc Graw-Hill. COLTON: Statistica in Medicina. PICCIN-Padova. STANTON-GLANTZ: Statistica per disciplina biomediche, Mc Graw-Hill.

Modalità d'esame

L'esame è basato su una prova scritta ed una orale. Sono previste iniltre alcune esercitazioni scritte intermedie su argomenti concordati. Le valutazioni di tali esercitazioni sono parte integrante della prova orale finale.

Note

RICEVIMENTO STUDENTI

I docenti ricevono su appuntamento preso via e-mail o per telefono.

Ultimo aggiornamento 07/11/2023 10:41