Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa CHIMICA TEORICA

FILIPPO LIPPARINI

2023/24 Anno accademico CdS **CHIMICA** Codice 191CC **CFU** 6

Moduli Settore/i Tipo Ore Docente/i

CHIMICA TEORICA CHIM/02 **LEZIONI** FILIPPO LIPPARINI 55

Obiettivi di apprendimento

Conoscenze

Lo studente che completa il corso con successo conoscerà i principali metodi della chimica teorica per il calcolo dell'energia di correlazione e delle proprietà molecolari.

Conoscerà inoltre, in alcuni casi semplici, come viene progettata ed implementata la realizzazione numerica di tali tecniche.

Modalità di verifica delle conoscenze

Esame orale

Capacità

Lo studente avrà preso dimestichezza con le tecniche di chimica teorica, come l'uso della seconda quantizzazione, le basi del calcolo variazionale e alcuni metodi numerici per la soluzione di problemi lineari. Avrà inoltre preso contatto con alcuni fondamenti di un codice di calcolo elettronico e sarà in grado, dati gli integrali molecolari, di scrivere un semplice programma di calcolo.

Modalità di verifica delle capacità

Realizzazione di un progetto computazionale

Comportamenti

Lo studente imparerà a pensare ai metodi di calcolo non solo come strumento astratto e teorico, ma anche come strumento numerico, ponendosi il problema della loro realizzazione numerica, della loro implementazione, del loro costo computazionale.

Modalità di verifica dei comportamenti

Esame orale e progetto computazionale

Prerequisiti (conoscenze iniziali)

Conoscenza dei principi della meccanica quantistica e dei fondamenti della chimica quantistica, ad esempio, tramite la frequenza del corso di Chimica Quantistica e Modellistica Molecolare del primo semestre.

Buona conoscenza e praticità con l'analisi matematica e l'algebra lineare. Qualche conoscenza di elettrodinamica.

Conoscere i rudimenti della programmazione in Fortran è fortemente consigliato, ma non obbligatorio.

Indicazioni metodologiche

Lezioni frontali, laboratorio computazionale

Programma (contenuti dell'insegnamento)

Parte di teoria:

Seconda quantizzazione: stati, operatori, matrici densità.

Teoria degli orbitali: ottimizzazione degli orbitali per una funzione d'onda qualsiasi. Gradiente, Hessiano.

Algoritmi di ottimizzazione al primo e al secondo ordine.

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

Interazione di configurazioni: implementazione di un metodo Full CI usando il formalismo delle stringhe alfa e beta.

CASSCF: ottimizzazione al secondo ordine e algoritmo "Norm Extended Optimization".

Metodo Coupled Cluster. Tecniche diagrammatiche. Derivazione sistematica delle equazioni CC.

Introduzione alla teoria delle derivate analitiche a livello HF. Cenni al calcolo delle derivate per metodi post-HF. Metodo dello "Z-Vector".

A richiesta degli studenti, alcuni argomenti potranno essere approfonditi maggiormente, omessi o aggiunti.

Parte pratica:

=======

Rudimenti di programmazione in Fortran. Integrali molecolari e il loro stoccaggio su disco. Implementazione delle equazioni di Roothan. Convergenza del metodo SCF e tecniche di accelerazione della convergenza: Damping e DIIS. Alcune considerazioni sull'efficienza computazionale, uso di librerie ottimizzate.

Bibliografia e materiale didattico

Qualsiasi libro sui principi della Meccanica Quantistica e sui metodi della Chimica Teorica, ad esempio Helgaker, Olsen, Jorgensen: "Molecolar Electronic-Structure Theory", Wiley

Indicazioni per non frequentanti

La frequenza è fortemente consigliata. Gli studenti non frequentanti sono invitati a contattare il docente.

Modalità d'esame

Esame orale.

Prima dell'esame orale, verrà assegnato un progetto computazionale da eseguire, a scelta, da soli o in gruppo, che prevederà l'implementazione rudimentale di una delle tecniche viste durante il corso a partire da quanto fatto durante il laboratorio. Lo svolgimento di tale progetto è obbligatorio.

Ultimo aggiornamento 11/09/2023 14:34