

Sistema centralizzato di iscrizione agli esami Syllabus

2023/24

UNIVERSITÀ DI PISA ELECTRIC PROPULSION II

TOMMASO ANDREUSSI

Academic year

Course INGEGNERIA AEROSPAZIALE 505II

Credits 6

Modules Area Type Hours Teacher(s)

ELECTRIC PROPULSION II ING-IND/07 LÉZIONI 60 TOMMASO ANDREUSSI FABRIZIO PAGANUCCI

Obiettivi di apprendimento

Conoscenze

Il corso offre agli studenti una preparazione specialistica nel campo della propulsione spaziale, estesa alle tecnologie più avanzate o introdotte più di recente, con particolare enfasi sui sistemi di propulsione elettrica, e fornisce loro le conoscenze relative a funzionamento, prestazioni tipiche, aspetti critici e stato di sviluppo, in modo da permetter loro di affrontare i principali problemi di analisi, progettazione, integrazione e utilizzo.

Modalità di verifica delle conoscenze

Le conoscenze acquisite vengono verificate attraverso un colloquio individuale.

Capacità

Alla fine del corso:

- Gli studenti sapranno come applicare gli strumenti teorici trattati nel corso per l'analisi e la progettazione preliminare dei principali tipi di propulsori elettrici.
- Gli studenti saranno in grado di condurre ricerche e analisi delle fonti disponibili nella letteratura, nonché ricerche web relative ai progetti di loro interesse.
- Gli studenti saranno in grado di presentare, attraverso relazioni scritte o articoli per conferenze, nonché presentazioni con slide, i risultati delle loro attività.

Modalità di verifica delle capacità

- Durante le sessioni pratiche, verranno presentati e discussi con gli studenti articoli significativi relativi agli argomenti principali del corso.
- Saranno svolte attività pratiche per comprendere le tecniche sperimentali e gli strumenti di laboratorio pertinenti agli argomenti del corso.
- Gli studenti saranno divisi in team per lavorare su progetti incentrati sulla progettazione di un sistema di propulsione elettrica.
- Gli studenti dovranno preparare e presentare relazioni scritte documentando i risultati delle attività di progetto.

Comportamenti

- Gli studenti acquisiranno e/o svilupperanno consapevolezza delle principali questioni coinvolte nella progettazione e nello sviluppo dei propulsori elettrici (EP Threusters).
- Gli studenti saranno in grado di gestire o comprendere le responsabilità legate alla gestione o al lavoro in un team di progetto.
- Gli studenti acquisiranno precisione e accuratezza nella raccolta e nell'analisi dei dati sperimentali.

Modalità di verifica dei comportamenti

- Durante le sessioni pratiche, verrà valutata l'accuratezza e la precisione delle attività svolte.
- Durante il lavoro di gruppo, saranno valutati i metodi di assegnazione delle responsabilità, la gestione e l'organizzazione durante le fasi del progetto.
- Dopo le attività di seminario, agli studenti sarà richiesto di presentare brevi relazioni riguardanti gli argomenti discussi.

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

Prerequisiti (conoscenze iniziali)

Gli studenti devono avere una buona base di corsi di fisica e matematica di livello base e devono aver acquisito una buona conoscenza di base della dinamica dei plasmi, ottenuta frequentando il corso preparatorio Propulsione Elettrica I.

Indicazioni metodologiche

Modalità didattica: In presenza / tramite teleconferenza, a seconda delle circostanze Attività di apprendimento:

- · partecipazione alle lezioni
- · partecipazione ai seminari
- partecipazione alle attività di laboratorio e di progetto
- · studio individuale
- · ricerca bibliografica

Frequenza: Raccomandata

Programma (contenuti dell'insegnamento)

Introduzione e storia della Propulsione Elettrica. Teoria generale dei propulsori elettrici. Fondamenti dell'accelerazione del plasma. Propulsori Hall. Propulsori elettrostatici: motori a ioni a griglia, motori FEEP e motori a colloidi. Propulsori elettromagnetici: propulsori magnetoplasmodinamici e propulsori al plasma pulsati. Propulsori elettrotermici: Arcjets, Resistojets. Altri tipi di propulsori avanzati. Analisi e progettazione di missioni a bassa spinta.

Bibliografia e materiale didattico

Lettura obbligatoria: Appunti del corso ed esercizi da parte dell'insegnante. Lettura consigliata:

- Jahn, R.G., "Physics of Electric Propulsion", Dover, 2006.
- Goebels, D.M., Katz, I., "Fundamentals of Electric Propulsion: Ion and Hall Thrusters", Wiley, 2008.

Indicazioni per non frequentanti

I contenuti del corso sono ogni anno in parte rielaborati. Si consiglia di tenersi aggiornati sulle ultime versioni dei documenti a supporto delle lezioni tramite e-learn e consultando il docente.

Modalità d'esame

- L'esame è composto da una prova orale.
- La prova orale consiste in un colloquio tra il candidato e il docente o tra il candidato e i collaboratori del docente. Durante la prova orale, al candidato potrebbe essere richiesto di risolvere anche problemi/esercizi scritti di fronte al docente o in una posizione separata (ad esempio, lo studente potrebbe spostarsi a un tavolo vicino per completare alcune attività mentre il docente continua l'esame con altri candidati).
- Lo svolgimento delle attività di laboratorio e di progetto, documentate dalle relative note tecniche, non è obbligatorio ma rappresenta un vantaggio ai fini della prova e del voto finale.

Ultimo aggiornamento 20/10/2023 18:01