

Sistema centralizzato di iscrizione agli esami Syllabus

2023/24

Università di Pisa

AERODINAMICA SPERIMENTALE

ALESSANDRO MARIOTTI

Academic year

Course INGEGNERIA AEROSPAZIALE
Code 451II

Credits 6

Modules Area Type Hours Teacher(s)

AERODINAMICA ING-IND/06 LEZIONI 60 ALESSANDRO MARIOTTI

SPERIMENTALE

Obiettivi di apprendimento

Conoscenze

Il corso ha lo scopo di fornire allo studente le nozioni fondamentali sul ruolo della sperimentazione nella progettazione aerodinamica e su strumenti e tecniche dell'aerodinamica sperimentale.

Modalità di verifica delle conoscenze

In sede di esame finale.

Capacità

Alla fine del corso gli allievi dovranno essere in grado di definire nel dettaglio un programma di sperimentazione aerodinamica in galleria del vento in funzione degli obiettivi progettuali, e di indicare le metodologie per la sua esecuzione e per l'analisi dei relativi risultati.

Modalità di verifica delle capacità

In sede di esame finale.

Comportamenti

Lo studente dovrà acqusire rigore e metodo nell'affrontare il progetto di prove sperimentali per diverse applicazioni ingegneristiche (aeromobili, autovetture, edifici, ponti).

Modalità di verifica dei comportamenti

In sede di esame finale.

Prerequisiti (conoscenze iniziali)

Fluidodinamica

Indicazioni metodologiche

Le lezioni sono frontali e sono tenute con supporto di lucidi proiettati. Per meglio illustrare le lezioni e in alcune esercitazioni verranno utilizzati filmati, grafici, software. Il materiale didattico è distribuito sulla piattaforma e-learning http://elearn.ing.unipi.it La partecipazione attiva alle lezioni è fortemente consigliata. Questa deve essere completata da studio individuale. Sono previste esperienze in galleria del vento.

Programma (contenuti dell'insegnamento)

Fondamenti della sperimentazione aerodinamica: Il concetto di similitudine aerodinamica, parametri adimensionali, teorema di Buckingham, similitudine completa e parziale, importanza della riproduzione della tipologia del flusso.

Le gallerie del vento: Descrizione dei vari tipi di gallerie del vento: gallerie subsoniche, transoniche e supersoniche. Problematiche generali e specifiche delle gallerie del vento. Caratterizzazione di una galleria del vento in termini di prestazioni e proprietà del flusso. Differenze fra gallerie per sperimentazione aerodinamica nei campi dell'ingegneria aeronautica, dei veicoli terrestri, civile. Cenni alle gallerie ad acqua. Le misure in galleria del vento:

- Misure di temperatura: sensori e sonde per la misura della temperatura totale e statica.
- Misure di pressione: sensori per la misura delle pressioni, sonde per la misura della pressione statica e dinamica in flusso subsonico e supersonico, misure delle pressioni superficiali su modelli in galleria del vento.

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa

- Misure di velocità: misure di velocità tramite misure di pressione, anemometria a filo caldo, anemometria Laser-Doppler, Particle Image Velocimetry.
- Misure di forza: descrizione, principio di funzionamento e progettazione delle bilance aerodinamiche interne ed esterne.
- Metodologie per la visualizzazione del flusso in regime subsonico e supersonico.

Acquisizione ed analisi dei dati sperimentali: Metodologie per l'acquisizione digitale di segnali sperimentali. Analisi dei segnali: analisi statistica classica (distribuzioni di probabilità, momenti statistici), analisi in frequenza (cenni sulla trasformata di Fourier e spettri di potenza), analisi tempo-frequenza (cenni sulla trasformata wavelet e sulla trasformata di Hilbert e sulla loro utilizzazione). Il problema dell'estrapolazione dei dati dalle condizioni di galleria a quelle reali.

Progettazione delle prove sperimentali: Progettazione e programmazione di campagne sperimentali in galleria del vento.

Bibliografia e materiale didattico

- Buresti G. Elements of fluid dynamics, Imperial College Press, 2012 (Coll. Bibl. DIA: 202.012.01.00)
- Goldstein R.J. Fluid mechanics measurements, Hemisphere, 1983 (Coll. Bibl. DIA: 242-83-01-00)
- Barlow J.B., Rae W.H., Pope A. Low-speed wind tunnel testing, John Wiley, 1999 (Coll. Bibl. DIA: 241-99-01-00)
- Bryer D.W., Pankhurst R.C. Pressure-probe methods for determining wind speed and flow direction, her Majesty's Stationery Office, 1971 (Coll. Bibl. DIA: 242-71-01-00)
- · Mariotti, A. Materiale del corso disponibile su E-learning
- Yang W.-J. Handbook of flow visualization, Hemisphere, 1989 (Coll. Bibl. DIA: 243-89-01-00)

Indicazioni per non frequentanti

Si consiglia di seguire le lezioni e di studiare la materia durante il semestre. Per chi fosse impossibilitato a seguire attivamente il corso, si consiglia di reperire il materiale fornito su e-learnig, in maniera tale da preparare correttamente l'esame. I testi consigliati possono fornire alcune utili integrazioni nella preparazione dell'esame finale.

Modalità d'esame

Esame orale (3 domande sulle parti principali del corso ed il progetto di prove sperimentali, durata 1 ora).

Altri riferimenti web

I registri delle lezioni sono disponibili sul sito web di Ateneo Unimap (http://unimap.unipi.it/).

Note

Su appuntamento tramite e-mail

Ultimo aggiornamento 03/10/2023 14:19

2/2