

Sistema centralizzato di iscrizione agli esami

Programma

UNIVERSITÀ DI PISA RADIATION PROTECTION

RICCARDO CIOLINI

Anno accademico CdS Codice CFU 2023/24 INGEGNERIA NUCLEARE 1095I

Moduli Settore/i Tipo Ore Docente/i
RADIATION PROTECTION ING-IND/20 LEZIONI 60 RICCARDO CIOLINI

Obiettivi di apprendimento

Conoscenze

Il corso riguarda i principi e gli obiettivi fondamentali della radioprotezione, le grandezze dosimetriche utilizzate per stimare il rischio radiologico per gli esseri umani, gli effetti biologici delle radiazioni ionizzanti, i calcoli di base delle schermature e le altre misure di protezione radiologica negli ambienti lavorativi, la descrizione e l'utilizzo corretto della strumentazione radioprotezionistica, gli aspetti normativi ed i requisiti amministrativi dei programmi radioprotezionistici applicati agli ambienti di lavoro industriali e alle attività mediche.

6

Modalità di verifica delle conoscenze

Le conoscenze saranno verificate durante la prova d'esame.

Capacità

Al termine del corso l'allievo dovrà essere in grado di:

- riconoscere le varie sorgenti di radiazioni, le modalità di esposizione ed i rischi connessi;
- avere familiarità con la strumentazione usata in radioprotezione;
- comprendere gli aspetti fondamentali delle esposizioni alle radiazioni, delle tecniche radioprotezionistiche e di schermatura;
- eseguire misure e calcoli di dosimetria sia per esposizioni esterne che interne alle radiazioni ionizzanti e valutare i rischi associati;
- conoscere gli standard, le linee guida e le raccomandazioni della radioprotezione.

Modalità di verifica delle capacità

Le capacità saranno verificate durante la prova di esame con domande sugli argomenti indicati.

Comportament

Al termine del corso, lo studente dovrà essere in grado di applicare i principi di radioprotezione ai vari settori industriali, consapevole dell'affidabilità dei dosimetri e delle tecniche di misura per la sorveglianza fisica della radioprotezione.

Modalità di verifica dei comportamenti

La verifica della padronanza da parte dello studente degli argomenti di radioprotezione sarà svolta durante la prova di esame.

Prerequisiti (conoscenze iniziali)

Gli studenti devono conoscere i fondamenti della fisica atomica e nucleare, delle interazioni delle radiazioni con la materia e i principi dell'ingegneria nucleare.

Indicazioni metodologiche

Lezioni frontali in lingua inglese con ausilio di slide ed esercitazioni in laboratorio a gruppi o con dimostrazioni per tutti da parte del docente. Il materiale didattico è disponibile su Google Classroom (codice del corso: qkyavdr) o richiedendolo direttamente al docente.

Programma (contenuti dell'insegnamento)

- Interazioni delle radiazioni ionizzanti con la materia.
- Grandezze per la radioprotezione e la dosimetria: grandezze di campo, dosimetriche e operative.
- Rivelatori e misure dosimetriche: proprietà generali di rivelatori di radiazioni e dei dosimetri, camere a ionizzazione, calorimetri, dosimetri chimici, film badge, emulsioni nucleari, rivelatori termoluminescenti, rivelatori a tracce nucleari, dosimetria per neutroni.

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

- Radiobiologia ed effetti biologici delle radiazioni ionizzanti: meccanismo di danno, studi di sopravvivenza cellulare, fattori che influenzano la radiosensibilità cellulare, trasferimento lineare di energia ed efficacia biologica relativa, frazionamento della dose, azione diretta e indiretta, effetto dell'ossigeno, effetti del ciclo cellulare, legge di Bergonie e Tribondeau. Effetti deterministici e stocastici delle radiazioni: modelli doserisposta, approccio lineare senza soglia, epidemiologia e fattori di rischio.
- Schermatura delle radiazioni.
- Contaminazione e dosimetria interna: introduzione di radionuclidi nel corpo umano, semplici modelli metabolici, modello a compartimenti dell'organismo umano, calcolo della dose in seguito ad esposizione interna.
- Il gas radon e la sua dosimetria.
- Sistemi di controllo in radioprotezione (principi della radioprotezione).
- Legislazione e regolamentazione della radioprotezione: condizioni di applicazione per i materiali radioattivi naturali e artificiali e le macchine radiogene, NORM, importazione, produzione, commercio e trasporto di materiali radioattivi, comunicazione e procedura di autorizzazione all'uso di sorgenti di radiazioni. Standard internazionali di sicurezza dell'AIEA, Direttiva 59/2013 dell'Unione Europea, impostazione di base dell'ICRP.
- Raggi cosmici.
- Sorveglianza fisica e medica della radioprotezione, obblighi del datore di lavoro e dei lavoratori, classificazione delle aree e dei lavoratori, limiti di dose, documentazione di radioprotezione, esperto di radioprotezione.
- Dosimetria di criticità.
- Sistemi di gestione delle emergenze in radioprotezione.
- Legislazione italiana per la costruzione di impianti nucleari e per il loro decommissioning.
- Gestione dei rifiuti radioattivi, trasporto di materiali radioattivi, cenni alla radioprotezione in medicina.

Bibliografia e materiale didattico

Oltre alle slide fornite dal docente, alcuni testi sui quali approfondire gli argomenti del corso sono i seguenti:

- J. E. Martin, Physics for Radiation Protection, Wiley?VCH Verlag, Weinheim, 2013.
- J. Shapiro, Radiation protection: a guide for scientists, regulators, and physicians, Harvard University Press, 2002.
- T. E. Johnson, Introduction to Health Physics, 5th Edition, McGraw-Hill Education, 2017.
- F. H. Attix, Introduction to radiological physics and radiation dosimetry, Wiley-VCH, 2004.
- P. Andreo et al., Fundamentals of Ionizing Radiation Dosimetry, Wiley-VCH, 2017.
- R. F. Laitano, Fondamenti di dosimetria delle radiazioni ionizzanti, ENEA, 2015.
- C. Polvani, Elementi di radioprotezione, ENEA, 1993.

Direttiva del Consiglio Europeo 2013/59/Euratom.

Decreto Legislativo 101/2020.

ICRP, The 2007 Recommendations of the International Commission on Radiological Protection, ICRP Publication 103. Ann. ICRP 37 (2-4), 2007.

Indicazioni per non frequentanti

Non sussistono variazioni per studenti non frequentanti in merito a programma, materiale didattico, modalità d'esame e bibliografia.

Modalità d'esame

L'esame orale consiste in un colloquio durante il quale lo studente è invitato a discutere uno o più argomenti trattati a lezione o nell'ambito delle esercitazioni di laboratorio. Durante il test, viene valutata la comprensione e l'analisi critica dei contenuti del corso effettuata dallo studente, utilizzando la terminologia appropriata. L'esame può essere in italiano o in inglese, a scelta dello studente. L'esame viene svolto nelle date stabilite da calendario di Ateneo ed ha una durata di circa 1 ora.

Ultimo aggiornamento 17/07/2023 18:43