

Sistema centralizzato di iscrizione agli esami Syllabus

Università di Pisa Fisiologia vegetale

RICCARDO DI MAMBRO

Academic year 2023/24

Course SCIENZE BIOLOGICHE

Code 081EE

Credits

Modules Area Type Hours Teacher(s)

FISIOLOGIA VEGETALE BIO/04 LÉZIONI 80 RICCARDO DI MAMBRO CARMELINA SPANO'

9

Obiettivi di apprendimento

Conoscenze

Al completamento del corso, gli studenti avranno ottenuto una solida conoscenza dei principi della fisiologia vegetale che correlano struttura, funzione e sviluppo al fine di grantire una corretta crescita e risposta all'ambiente.

Capacità

Al termine del corso:

- lo studente avrà acquisito conoscenza sui principali processi fisiologici e biochimici che avvengono nelle piante, sul trasporto di acqua e nutrienti, sugli scambi gassosi, sulla risposta a stress ambientali, sulla crescita e lo sviluppo.
- lo studente avrà ottenuto una panoramica globale sulle tecniche di studio della fisiologia vegetale.

Prerequisiti (conoscenze iniziali)

Biochimica Biologia cellulare Biologia molecolare

Genetica

Lo studente è invitato a verificare l'esistenza di eventuali propedeuticità consultando il Regolamento del Corso di studi relativo al proprio anno di immatricolazione. Un esame sostenuto in violazione delle regole di propedeuticità è nullo (Regolamento didattico d'Ateneo, art. 24, comma 3)

Indicazioni metodologiche

- · Lezioni frontali con ausilio di slide
- Attività pratiche di laboratorio svolte in piccoli gruppi inerenti argomenti trattati nel corso
- Sito elearning del corso: materiale didattico, comunicazioni docente-studenti
- Interazione tra studente e docente mediante ricevimenti e posta elettronica

Programma (contenuti dell'insegnamento)

La cellula vegetale

Struttura, biogenesi ed espansione della parete cellulare

Le piante e l'acqua

Il potenziale idrico e le sue componenti

Assorbimento, trasporto e movimento dell'acqua

Le piante ed i nutrienti minerali

Nitrato, ammonio, zolfo, ciclo dell'azoto, fissazione dell'azoto, nitrogenasi

Trasporto dei soluti

La fotosintesi. Reazioni alla luce. I pigmenti fotosintetici: le clorofille ed i carotenoidi. Meccanismi di assorbimento della luce

Il cloroplasto ed i fotosistemi. La fotofosforilazione non ciclica e la fotofosforilazione ciclica

Il metabolismo fotosintetico del carbonio. Il ciclo di Calvin. La modulazione da parte della luce degli enzimi del ciclo di Calvin

La fotorespirazione. La sintesi di saccarosio e la sintesi di amido. Il ciclo C4

La fotosintesi CAM. L'evoluzione di CAM in ambienti desertici ed acquatici. Confronto tra il metabolismo CAM e quello C4. I vari tipi CAM:

Sistema centralizzato di iscrizione agli esami Syllabus

જે.

Università di Pisa

obbligato, facoltativo, idling e cycling. La discriminazione isotopica delle piante CAM, C4 e C3

Vie di traslocazione dei fotoassimilati attraverso il floema. L'influenza dei sources e dei sinks sul trasporto floematico. Il caricamento e lo scaricamento del floema. La traslocazione a lunga distanza dei fotoassimilati

Respirazione e metabolismo lipidico Difese vegetali e metaboliti secondari

Embriogenesi e meristemi

Senescenza e morte cellulare programmata

Gli ormoni vegetali

L'auxina. Struttura, biosintesi, catabolismo, trasduzione del segnale, funzione e trasporto. Processi di sviluppo e fisiologici regolati dall'auxina Le citochinine. Struttura, biosintesi, catabolismo, trasduzione del segnale, funzione e trasporto. Processi di sviluppo e fisiologici regolati dalle citochinine

Le gibberelline. Struttura, biosintesi, catabolismo, trasduzione del segnale e funzione. Processi di sviluppo e fisiologici regolati dalle gibberelline L'etilene. Struttura, biosintesi, catabolismo, trasduzione del segnale e funzione. Processi di sviluppo e fisiologici regolati dall'etilene L'acido abscissico. Struttura, biosintesi, catabolismo, trasduzione del segnale, funzione e trasporto. Processi di sviluppo e fisiologici regolati dall'acido abscissico

I brassinosteroidi. Struttura, biosintesi, catabolismo, trasduzione del segnale, funzione e trasporto. Processi di sviluppo e fisiologici regolati dai brassinosteroidi

Rete di interazioni tra ormoni e regolazione dell'espressione genica nei processi di sviluppo

Bibliografia e materiale didattico

L. Taiz e E. Zeiger, Fisiologia Vegetale, Quarta edizione italiana (2012) Piccin Nuova Libraria S.p.A., ISBN 978-88-299-2157-7

Modalità d'esame

L'esame può essere sostenuto mediante le seguenti modalità:

- 1. Due prove scritte con domande a risposta aperta e/o chiusa. Tali compitini saranno fissati uno a metà corso e uno a fine corso. I compitini si baseranno sugli argomenti del corso trattati nel relativo periodo di interesse. Il secondo compitino verterà unicamente sugli argomenti trattati nella seconda parte del corso (argomenti da metà a fine corso). Il voto finale sarà dato dalla media dei voti attenuti nelle due prove.
- 2. Unica prova scritta finale a fine corso con domande a risposta aperta e/o chiusa. Tale prova finale di esame tratterà la totalità degli argomenti del programma del corso. Il numero e tipologia di domande verrà adeguatamente scelto al fine di poter ottenere una valutazione globale su tutti gli argomenti trattati.

Il mancato superamento della prima prova intermedia (compitino di metà corso) determina l'impossibilità da parte dello studente di effettuare la seconda. Lo studente dovrà quindi sostenere la prova finale comprendente domande sull'intero programma del corso.

Note

Commissione d'esame

Presidente: Riccardo Di Mambro Membri: Noemi Svolacchia, Carlo Sorce

Presidente supplente: Carlo Sorce

Membri supplenti: Carmelina Spanò, Debora Fontanini, Daria Scintu, Margaryta Shtin, Federico Vinciarelli

Ultimo aggiornamento 28/07/2023 12:45

2/2