

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa Chimica industriale II

MONICA PUCCINI

Anno accademico CdS Codice CFU 2023/24 INGEGNERIA CHIMICA 660II 6

Ore

60

Moduli Settore/i
CHIMICA INDUSTRIALE II ING-IND/27

Tipo LEZIONI Docente/i MONICA PUCCINI SANDRA VITOLO

Obiettivi di apprendimento

Conoscenze

Al termine del corso lo studente avrà acqusito conoscenze in merito alla struttura dell'industria chimica e ai processi industriali che partire dalle materie prime, organiche e inorganiche, consentono di ottenere i prodotti finali.

Modalità di verifica delle conoscenze

L'apprendimento delle conoscenze verrà verificato attraverso prove in itinere e una prova finale.

Capacità

Al termine del corso lo studente saprà riconoscere i principi e i fondamenti di carattere termodinamico e cinetico nonché le strategie di integrazione e sintesi dei processi nella scelta delle condizioni operative, delle apparecchiature e delle configurazioni adottate nei principali processi della chimica industriale di produzione dei bulk di base e intermedi e saprà applicarli alla progettazione di nuovi processi industriali.

Modalità di verifica delle capacità

Il corso è impostato su modalità interattiva: ogni lezione frontale comprende ampi spazi di confronto tra docente e studenti che permette il monitoraggio costante del livello di acquisizione delle competenze.

Comportament

Durante il corso gli studenti potranno maturare la sensibilità alla integrazione delle competenze caratterizzanti l'ingeneria chimica.

Modalità di verifica dei comportamenti

Al termine del corso si procede ad una verifica dell'acquisizione del comportamento relativo all'approccio integrativo mediante un test.

Prerequisiti (conoscenze iniziali)

Impianti chimici, analisi e sintesi dei processi chimici

Indicazioni metodologiche

Vengono svolte lezioni frontali, anche con l'ausilio di slide. Quando possibile vengono organizzate visite presso stabilimenti industriali.

Programma (contenuti dell'insegnamento)

L'industria chimica europea nello scenario mondiale. I settori dell'industria chimica. Le materie prime dell'industria chimica.

I trattamenti upstream del greggio e del gas naturale. I cicli di raffinazione. Frazionamento del greggio: colonne di topping e vacuum.

I bulk di base inorganici: i gas di sintesi. I gas di sintesi da steam reforming: reazioni, termodinamica, cinetica, parametri operativi di processo, reattori. Filiera dei gas di sintesi. Sintesi dell'ammoniaca: reazione, termodinamica, cinetica, catalizzatore indistriale,meccanismo di reazione ed equazione cinetica, conversione di equilibrio in funzione dei parametri di processo, preparazione del gas di sintesi, reattori adiabatici a scambio termico e a quenching interstadio, diagrammi conversione-temperatura, retta adiabatica di conversione. Sintesi del metanolo. Reazioni, termodinamica, cinetica, catalizzatore, condizioni operative di processo (T, P, rapporto molare reagenti), reattori.

I bulk di base organici: gli alcheni inferiori e gli aromatici inferiori. Processo di cracking catalitico: catalizzatori, meccanismo cinetico, termodinamica, reattore, condizioni operative di processo. Lo steam reforming: meccanismo cinetico, termodinamica, reattore e condizioni

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

operative di processo. Alcheni inferiori da reforming catalitico: reazioni, termodinamica, cinetica, catalizzatore, reattori, parametri operativi di processo. Filiere della petrolchimica. Livelli di ossidazione. Produzione di ossido di etilene: reazioni, termodinamica, cinetica, catalizzatore, processa ad ossigeno e ad aria. Produzione di formaldeide: processo di ossidazine diretta e di deidrogenazione.

I bulk da materie prime inorganiche: produzione di acido solforico da zolfo elementare, processo di produzione del carbonato di sodio (soda Solvay).

Elettrochimica industriale: voltaggio minimo di elettrolisi, misura delle sovratensioni, regime di corrente di scambio, di Tafel e regime diffusivo, relative correlazioni per la sovratensione. Cadute ohmiche, grafici potenziale-densità di corrente in condizioni industriali di processo; rendimento faradico, di tensione ed energetico, sala celle: connessione mono e bipolare, alimentazione di processo in serie e in parallelo. Impianto di conversione: curva caratteristica, rendimento di conversione, curva caratteristica della sala celle e sistema di controllo. Processo cloro-soda elettrolitico: celle a diaframma, a mercurio e a membrana, reazioni anodiche e catodiche e condizioni di processo.

Bibliografia e materiale didattico

Il materiale didattico sarà reso disponibile agli studenti sulla piattaforma elearning.

Indicazioni per non frequentanti

Non sussistono variazioni per i non frequentanti

Modalità d'esame

La prova di esame è costituita da tre prove in itinere (test a risposta chiusa) e una prova finale. Le prove in itinere consistono in test a risposta chiusa. La prova finale consiste nello svilppo e presentazione di una strategia di processo di un caso industriale.

Resta sempre possibile sostenere l'esame nelle prove di appello ordinarie secondo le modalità ordinarie (prova orale).

Ultimo aggiornamento 15/11/2023 12:37