

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa Genetica molecolare

ROBERTO SCARPATO

Anno accademico 2023/24

CdS BIOLOGIA MOLECOLARE E

CELLULARE

Codice 188EE

CFU 6

Moduli Settore/i Tipo Ore Docente/i

GENETICA MOLECOLARE BIO/18 LEZIONI 48 ROBERTO SCARPATO

Obiettivi di apprendimento

Conoscenze

Approfondimento degli aspetti molecolari relativi a mutazione, ricombinazione, espressione genica, riparazione del DNA e genetica del cancro.

Modalità di verifica delle conoscenze

Lo studente sarà valutato in base alla sua dimostrata capacità di discutere i principali contenuti del corso utilizzando la terminologia appropriata.

Capacità

Al termine del corso lo studente sarà in grado di discutere le principali tematiche inerenti gli argomenti previsti per il corso.

Modalità di verifica delle capacità

Sarà possibile accertarsi dell'acquisizione delle capacità sopracitate tramite la modalità interattiva di svolgimento delle lezioni frontali.

Prerequisiti (conoscenze iniziali)

Per una migliore comprensione degli argomenti del corso, è raccomandato che la formazione degli studenti includa principalmente elementi di genetica di base e biochimica.

Indicazioni metodologiche

Le lezioni sono erogate in presenza con l'ausilio della proiezione di diapositive.

Programma (contenuti dell'insegnamento)

Introduzione al corso. Richiami dei concetti principali sulle sequenze del DNA, replicazione ed espressione genica.

Tetradi di guanina. Organizzazione delle tetradi e loro impatto su replicazione, trascrizione ed espressione genica. Le tetradi come possibile target terapeutico.

Organizzazione tridimensionale del nucleo interfasico. Proteine strutturali non istoniche e loro funzione.

Basi molecolari delle mutazioni puntiformi. Alcuni esempi. Le mutazioni dinamiche. Espansione di STR e fenotipi patologici. Meccanismi patogenetici e molecolari delle mutazioni dinamiche: il ruolo dell'enzima multifunzione FEN1.

Meccanismi molecolari delle mutazioni cromosomiche strutturali.

Variazioni del numero di sequenze genomiche: aneuploidie e CNV. Effetti gene-specifici e non gene-

Aneuploidia e gametogenesi femminile. Controllo della transizione metafase-anafase in meiosi I e II: ruolo di coesine, APC e SAC. Meccanismi e cause di aneuploidia in relazione all'età materna.

La ricombinazione omologa: il crossing-over. Riparazione dei DSB mediante ricombinazione omologa: meccanismi molecolari e proteine coinvolte. Il modello SDSA. Le giunzioni di Holliday e le resolvasi BTR, Mus-SLX e GEN1. Ricombinazione omologa e replicazione del DNA. Conversione genica. Effetti genetici della ricombinazione omologa. Altri meccanismi coinvolti nella riparazione dei DSB: Non Homologous End Joining classico e alternativo (A-EJ). La risposta al danno al DNA (DDR). Regolazione fra HR, NHEJ e A-EJ nella riparazione dei DSB. Sindromi correlate a difetti nei geni della riparazione dei DSB: Atassia teleangectasia, Sindrome di Bloom e di Nijmegen.

I sistemi di riparazione MMR, BER e NE. Meccanismi molecolari regolazione e sindromi genetiche ad essi associate.

I processo della cancerogenesi alla luce della teoria evoluzionistica. I geni del cancro: protooncogeni, oncosoppressori e geni mutatori. Esempi di attivazione di protooncogeni: K-ras, BCR-ABL e ERB-2. Caratteristiche dei geni oncosoppressori RB1, APC e TP53. Mutazioni inattivanti e ruolo delle 3 proteine nel promuovere l'instabilità genomica.

Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

Bibliografia e materiale didattico

Un testo di Genetica molecolare. Lezioni del docente

Modalità d'esame

Prova orale

Note

Commissione d'esame: Roberto Scarpato (Presidente) - Domenica Di Bello (membro 1) - Monica Cipollini (membro 2)

Ultimo aggiornamento 13/09/2023 14:07

2/2