

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

FORME STRUTTURALI PER IL DESIGN

SILVIA CAPRILI

Anno accademico 2023/24

CdS INGEGNERIA PER IL DESIGN

INDUSTRIALE

Codice 248HH

CFU

ModuliSettore/iTipoOreDocente/iFORME STRUTTURALIICAR/09LEZIONI60SILVIA CAPRILIPER IL DESIGNFRANCESCA MATTEI

6

Obiettivi di apprendimento

Conoscenze

Il corso si propone di trasmettere agli studenti le competenze necessarie per dimensionare elementi e strutture tipiche del design con particolare rifermento a problemi di resistenza, deformazione e stabilità e all'impiego di diversi materiali.

Al termine del corso, gli studenti avranno acquisito gli strumenti necessari per un esame critico e per la concezione strutturale di oggetti di design.

Modalità di verifica delle conoscenze

La verifica delle conoscenze sarà oggetto della valutazione finale mediante esame orale.

Capacità

Progettazione concettuale dell'oggetto Selezione del materiale più opportuno ed efficace Predimensionamento di elementi strutturali e di oggetti di design

Modalità di verifica delle capacità

Prova orale

Comportamenti

Lo studente potrà acquisire e/o sviluppare sensibilità alle problematiche generali della progettazione strutturale, quali scelta di schemi statici semplificati per il dimensionamento, selezione del materiale più congeniale, ecc.

Lo studente sarà in grado di organizzare/gestire un gruppo di progettazione.

Modalità di verifica dei comportamenti

Nel caso di presentazione di un'esercitazione, lo studente mostrerà le abilità sviluppate a livello progettuale, in termini di gestione delle diverse fasi progettuali.

Prerequisiti (conoscenze iniziali)

Nozioni base della Scienza delle Costruzioni e delle caratteristiche dei principali materiali.

Programma (contenuti dell'insegnamento)

Introduzione generale. Dal "Conceptual design" alla progettazione definitiva/esecutiva del sistema (oggetto/arredo/componente).

Materiali e resistenza dei materiali. Scelta del materiale in funzione dei requisiti del progetto. Materiali metallici, vetro e materiali ceramici, materiali compositi e polimerici, legno. Determinazione delle caratteristiche principali: resistenza, rigidezza, deformabilità, tenacità (meccaniche), costo e peso, durabilità.

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

La progettazione degli oggetti. La prevenzione del collasso strutturale: resistenza, deformabilità, instabilità dell'equilibrio. Criteri generali per un dimensionamento efficace.

Esempi tipici di sistemi mono e bidimensionali con riferimento al funzionamento statico: funi, aste e travi, archi, lastre, piastre e membrane. Richiami di statica delle strutture: l'equilibrio del corpo rigido e le equazioni cardinali della statica. Definizione degli schemi statici significativi in funzione del progetto da effettuare. Scelta dei vincoli e classificazione. Determinazione delle caratteristiche della sollecitazione. Esempi ed applicazioni pratiche.

Valutazione ed applicazione delle azioni esterne. Tipologie di carico (concentrato/distribuito lineare e superficiale). Classificazione dei carichi in base alla durata, definizione dei carichi permanenti e delle azioni variabili (neve/vento/esercizio) con riferimento alle NTC2018 e/o agli Eurocodici. Combinazione delle azioni e determinazione della domanda.

Principi e metodi per la valutazione della sicurezza. Calcolo elastico e calcolo anelastico per la valutazione della capacità. Metodo semiprobabilistico per la valutazione della sicurezza: confronto tra capacità e domanda.

Verifiche di sicurezza e progettazione. Verifiche tensionali e verifiche in termini di resistenza nei confronti delle sollecitazioni semplici e composte (compressione/trazione, flessione, taglio, torsione, presso/tenso-flessione, flessione e taglio). Applicazioni a casi pratici e specifiche in funzione della tipologia di materiale impiegato. Verifiche di instabilità: instabilità per carico di punta e instabilità flesso-torsionale, formulazione teorica e applicazioni pratiche con riferimento alla tipologia di materiale impiegato. Verifiche di deformabilità (funzionalità).

Dettagli costruttivi. I collegamenti, tipologie e dimensionamento di massima in funzione della tipologia di elemento/materiale impiegato.

Bibliografia e materiale didattico

Appunti delle lezioni del docente.

I seguenti testi possono essere utilmente consultati.

- Campanella, Introduzione alla meccanica delle strutture per il design, Aracne editrice
- · Del Curto, C. Marano, Materiali per il design. Introduzione ai materiali e alle loro proprietà, Casa Editrice Ambrosiana
- Silver, W. McLean, Introduction to architectural technology, Editore: Laurence King

Modalità d'esame

Prova Orale.

Ultimo aggiornamento 02/11/2023 16:33

2/2