Scheda programma d'esame
RATIONAL MECHANICS
GIANLUIGI DEL MAGNO
Academic year2020/21
CourseCIVIL-ENVIRONMENTAL & BUILDING ENGINEERING
Code525AA
Credits6
PeriodSemester 2
LanguageItalian

ModulesAreaTypeHoursTeacher(s)
MECCANICA RAZIONALEMAT/07LEZIONI60
GIANLUIGI DEL MAGNO unimap
Obiettivi di apprendimento
Learning outcomes
Conoscenze

Lo studente sarà in grado di impostare e possibilmente risolvere problemi di statica e di dinamica di corpi rigidi vincolati.

 

Knowledge

On the basis of precisely stated general principles, which summarise the fundamental laws of Mechanics, the student should be able to solve or at least to set up correctly problems of Mechanics or physics with the rigorous tools of the Mathematical analysis.

Modalità di verifica delle conoscenze

Ricevimenti ed incontri periodici.

 

Assessment criteria of knowledge
  • Final written test
  • Final oral exam
Capacità

Capacità di affrontare problemi di meccanica, sia di ordine teorico che tecnico applicativo, con il dovuto rigore matematico.

 

Modalità di verifica delle capacità

Ricevimenti personali e di gruppo.

 

 

 

 

Comportamenti

L'aspettativa è che lo studente sviluppi la capacità di uno studio individuale sistematico finalizzato ad impostare in modo organico problemi tecnico-scientifici sulla base di pochi principi generali.

 

 

 

Modalità di verifica dei comportamenti

Durante i ricevimenti o discussione in aula degli argomenti trattati.

 

 

 

 

Prerequisiti (conoscenze iniziali)

Argomenti trattati nei corsi di Analisi I e II, Geometria ed Algebra Lineare, e Fisica I: calcolo differenziale ed integrale, geometria analitica, elementi della teoria degli spazi vettoriali, meccanica del punto materiale.

 

 

 

Indicazioni metodologiche

Lezioni frontali con esercitazioni in aula. Riferimento al sito e-learning per appunti di lezione, complementi, esercizi, testi di prove scritte di esame. 

 

Teaching methods

Teaching method: lectures

Attendance: mandatory

 

Programma (contenuti dell'insegnamento)
  • Calcolo vettoriale. Operazioni tra vettori. Rappresentazione di vettori secondo terne orientate. Momento di un sistema di vettori. Trinomio invariante. Asse centrale. Centro di vettori paralleli. Poligono funicolare per sistemi di vettori piani. Derivata di un vettore rispetto ad uno o più parametri.
  • Elementi di Geometria differenziale delle curve. Arco di curva. Formule di Frenet-Serret. Raggio di curvatura e torsione.
  • Cinematica del punto e del continuo rigido. Rotazione finita ed angoli di Eulero. Rotazione infinitesima e formule di Poisson. Formula fondamentale della cinematica rigida. Asse istantaneo del moto. Cinematica relativa.
  • Campi vettoriali. Linee di campo. Lavoro di un campo di forze. Campi conservativi. Operatore di divergenza e di rotore . Operatore ed equazione di Laplace (cenni).
  • Geometria delle masse. Densità di massa per un continuo. Centro di massa. Momenti di inerzia. Momenti centrifughi. Tensore di inerzia. Momenti ed assi principale di inerzia. Ellissoide di inerzia. Proprietà delle figure piane.
  • Statica. Postulato fondamentale per l’equilibrio di uno o più corpi rigidi. I vincoli e le reazioni vincolari. Vincoli olonomi lisci. Sistemi isostatici. L’arco a tre cerniere sottoposto a carichi puntuali o distribuiti. Strutture reticolari. Risoluzione analitica e grafica (metodo di Cremona e di Ritter). Spostamenti elementari virtuali. Variabili lagrangiane e componenti lagrangiane delle forze. Principio dei lavori virtuali. Caso di forze conservative. Stabilità dell’equilibrio. Cenni sull’attrito radente, volvente e di giro.
  • Cinematica delle masse. Quantità di moto, momento della quantità di moto ed energia cinetica per un continuo. Proprietà e teoremi relativi ad un continuo rigido.
  • Dinamica. Le forze di inerzia ed il principio di D’Alémbèrt. Equazioni cardinali della dinamica. Teorema dell’energia cinetica. Integrali primi del moto. Moto armonico. Moto di un grave in mezzo viscoso. Equazioni di Eulero per le rotazioni. Rotazioni per inerzia. Precessioni regolari. Vincoli e reazioni vincolari dinamiche. Vincoli lisci e vincoli a potenza nulla. Moto di un corpo rigido intorno ad un asse fisso e liscio. Pendolo composto. Equazione simbolica della dinamica. Equazioni di Lagrange. Oscillazioni smorzate e forzate. La risonanza. Dinamica e statica relativa. Le forze apparenti.
  • Sforzi nei continui. Sforzo normale, sforzo di taglio, momento flettente  e torcente in una sezione di trave. Caso di un’asta all’equilibrio arbitrariamente caricata. Tensore degli sforzi di Cauchy in un continuo.
Syllabus

Vector calculus. Kinematics of a moving point and of a rigid body. Relative motion. Infinitesimal and finite rotations. Mass distribution geometry. Inertia tensor. Equilibrium.Principles of Statics for a single rigid body and for a set of constrained rigid bodies. Principle of Virtual Power. Equilibrium-Stability and related Dirichlet-Lagrange cryterium. Dynamics.D'Alémbèrt Principle. Rigid body equations of motion. Equations of Momentum and of Angular Momentum. Euler equations for a rigid body rotational motion. Free rotations of a gyroscope. Lagrange's equations. Laws of Mechanics with respect to an arbitrary moving observer. Forced Linear vibrations and related resonance phenomena (one-dymensional case.

Bibliografia e materiale didattico

Teoria e Esercizi

- Appunti delle lezioni disponibili nel sito e-learning della scuola di Ingegneria

- P. Biscari, T. Ruggeri, G. Saccomandi e M.F. Vianello, Meccanica Razionale, 3a Edizione, Unitext 93, Springer Milan, 2015

Disponibile in versione e-book in biblioteca http://www.sba.unipi.it

- G. Amendola, Meccanica Razionale Lezioni Con Esercizi Ragionati per Gli Studenti Dei Corsi Di Laurea in Ingegneria, Tipografia Editrice Pisana, 2015

- P. Biscari, Introduzione Alla Meccanica Razionale Elementi Di Teoria Con Esercizi, Unitext 94, Milano, Springer, 2016

 

Esercizi

- D. Serra e C. Trimarco, Esercizi di Meccanica Razionale, Pisa University Press, 2019

- G. Frosali e F. Ricci, Esercizi di meccanica razionale, Ed. Esculapio, 2013

 

Bibliography

- Class notes 

- Class notes of Prof. Trimarco on the e-learning site

- T. Manacorda, Appunti di Meccanica Razionale, Libreria scientifica G. Pellegrini, 1983

- D. Serra e C. Trimarco, Esercizi di Meccanica Razionale, Pisa University Press, 2019

- P. Biscari, Introduzione alla meccanica razionale, Springer Verlag, 2016

Indicazioni per non frequentanti

Non dissimili da quelle per 'frequentanti'.

 

Modalità d'esame

Regole esame appello estivo 2021 

L'esame prevede un test preliminare scritto della durata di un'ora in cui si chiede al candidato di risolvere, o almeno impostare correttamente e con linguaggio appropriato, un problema meccanico. Il test è finalizzato solamente ad effettuare una selezione preliminare degli studenti iscritti ad un appello in vista della prova orale. Il candidato che abbia superato il test scritto con il giudizio 'AMMESSO' potrà accedere alla prova orale dell'appello in corso. Per sostenere il test è d'obbligo iscriversi tramite il portale esami.

La prova orale consiste in un colloquio tra il candidato e il docente e tra il candidato e i collaboratori del docente titolare. Durante la prova orale potrà essere richiesto al candidato di risolvere problemi/esercizi scritti. Per sostenere una nuova prova orale, lo studente dovrà superare nuovamente il test scritto.

Sia il test scritto che la prova orale si svolgeranno in modalità telematica sulla piattaforma Google Meet. Il link è lo stesso di quello usato per le lezioni.

 

 

Updated: 03/06/2021 14:08