Scheda programma d'esame
COSMOCHEMISTRY
LUIGI FOLCO
Academic year2020/21
CourseGEOSCIENCES AND GEOTECHNOLOGIES
Code173DD
Credits6
PeriodSemester 1
LanguageItalian

ModulesAreaTypeHoursTeacher(s)
COSMOCHIMICAGEO/07LEZIONI54
LUIGI FOLCO unimap
Obiettivi di apprendimento
Learning outcomes
Conoscenze

Conoscenza delle proprieta' chimico-fisiche-petrologiche dei materiali planetari come meteoriti e polveri cosmiche e dei principali metodi di indagine cosmogeochimica.

Fondamenti per la classificazione di meteoriti e polveri cosmiche per la comprensione della loro petrogenesi, e per la loro collocazione in un contesto astrofisico e geologico planetario.

Familiarizzare con metodi analitici come microscopia ottica (TL a RL), micro-Raman, microscopia elettronica e micronalisi.

Knowledge

The student who successfully completes the course will have the basic knowledge of the chemical-physical-petrological properties of planetary materials including meteorites and cosmic dust as well as knowledge of the main analytical methods of investigations. 

The student will be able to characterize and classify planetary materials including  meteorites, cosmic dust using optical and electron microscopy and microanalyses. and discuss the astrophysical or planetary context in which they formed.

The student will become familiar with analytical tools including optical microscopy (both transmitted and reflected light) and microanalytical scanning electron microprobe. 

Modalità di verifica delle conoscenze

Discussione in classe degli argomenti trattati

Assessment criteria of knowledge

Discussion of the course topics during classes, laboratory work and practicals.

Prerequisiti (conoscenze iniziali)

Consigliato l'aver seguito e suparato esami dei corsi riguardanti la geologia terrestre e planetaria, la mineralogia, la petrografia e la geochimica.

Prerequisites

Students who have followed the courses in the fields of mineralogy, petrography and geochemistry and and passed the exams will better appreciate the Cosmochemistry course.

Indicazioni metodologiche

Lezioni frontali e sessioni tecnico-analitihe in laboratorio.

Teaching methods

Slides provided by the teacher and some reference books.

Programma (contenuti dell'insegnamento)
  1. Introduzione al corso. Introduzione alla cosmochimica: come si e' generata ed evoluta la composizione del sistema solare. Un tour del sistema solare. La produzione degli elementi e la evoluzione stellare. La cosmochimica verso la geochimica planetaria.
  2. Grani presolari.
  3. Meteoriti; un laboratorio naturale per studiare le origini e la evoluzione del sistema solare
  4. Il progetto Meteoriti Antartiche del Programma Nazionale delle Ricerche in Antartide (PNRA).
  5. Le condriti: le rocce piu' antiche del sistema solare e la accrezione dei pianeti
  6. I corpi progenitori delle condriti (composizione e struttura).
  7. Acondriti primitive e differenziate e loro corpi progenitori: la differenzazione planetaria I.
  8. Irons, stony-irons e loro corpi progenitori: la differenzazione planetaria II.
  9. Meteoriti lunari e marziane.
  10. Polveri cosmiche I: micrometeoriti e loro corpi progenitori
  11. Polveri cosmiche II: Interplanetary dust particles e loro corpi progenitori.
  12. Cronologia del sistema solare prmordiale.
  13. Asteroidi e comete: il contesto geologico delle meteoriti e delle polveri cosmiche.
Syllabus
  1. Introduction to the course. Introduction to cosmochemistry: how the solar system's chemical composition arose and evolved.
  2. A tour of the Solar System: Sun, Mercury, Venus, Earth-Moon, Mars and its satellites, the Gas Giants and their satellites, minor bodies of the solar system (asteroids, comets, icy bodies in the Kuiper Belt and Oort Cloud).
  3. Element production and stellar evolution. From the Big-Bang to star formation. Classification of stars, mass and lifetime. Stellar evolution and nucleosynthesis.
  4. Comsmochemistry versus (planetary) geochemistry. Geochemical classification of the elements. Cosmochemical classification of the elements. Solar system and cosmic abundances of elements and isotopes. Solar system abundance: a baseline composition. Determining the solar system abundance in the Sun and meteorites. Solar system abundance of the elements. Solar system abundance of isotopes. How solar system abundances are used in cosmochemistry.
  5. Presolar grains. Circumstellar condensates. Interstellar grains. Moder identification and characterization of presolar grains: NanoSIMS, FIB, HRTEM techniques. AGB star grains. Supernova grains. Nova grains.
  6. Meteorites: a general introduction. History of meteoritics: from superstition to disbelief. Definitions. Meteorites macroscopic features: fusion crust, mass range, shapes, compositional types. Overall meteorite classification. Falls and finds. Atmospheric entry and impact on Earth's crsut. Meteorite collection in hot and cold deserts. Meteorite flux to Earth. The Italian PNRA Antarctic meteorite collection project.
  7. Chondrites. The oldest rock in our laboratory. Principles of radiometric dating and age of chondrites and their components. Solar abundance. The chondrite family: bulk chemical and isotopic composition of carbonaceous, ordinary and enstatite chondrites. Chondrite components: chondrule, CAI, matrix, iron alloys, sulfides, and their bulk chemical and isotopic composition. The cosmochemical setting of chondrite components and their formation. Secondary processes: acqueous alteration, thermal metamorphis, and shock metamorphism and melting. Organic materials in carbonaceous chondrites.
  8. Chondrite parent bodies. Evidence of asteroidal origin: orbits, reflectance spectra (pace weathering issue), space missions. Ordinary chondrite parent bodies: the onion-shell model. Carbonaceous chondrite icy parent bodies: the giant convection mud-ball models. Collisions amongst asteroids and their secondary rubble-pile structures.
  9. Achondrites. Overal classification: primitive versus differentiated achondrites. Petrography, bulk chemical and isotopic composition of primitive achondrites: acapulcoites, lodranites, winonaites, silicate inclusions in iron meteorites. Petrography, bulk chemical and isotopic composition of differentiated achondrites: angrites, aubrites, brachiites, ureilites, HED, mesosiderite silicates.
  10. Irons and stony-irons. Classification of iron meteorites. Petrography, bulk chemical and isotopic composition of primitive of the thirteen chemical classes of magmatic and non-magmatic iron meteorites. Petrography, bulk chemical and isotopic composition of stony iron meteorites: pallasites and mesosiderites.
  11. Planetary meteorites: Classification of Martian meteorites (SNC). Petrography, bulk chemical, isotopic composition of SNC. The relevance of Martian meteorites in the search for extraterrestrial life. Lunar meteorite and lunar rock classification. Petrography, bulk chemical and isotopic composition of lunar meteorites an rocks sampled by the Apollo and Luna missions.
  12. Cosmic dust 1. Introduction: definitions of micrometeorites and interplanetary dust particles (IDP) and their scientific importance for planetary sciences. Micrometeorite source and orbital evolution. Micrometeorite atmospheric entry. Micrometeorite collections. Classification of micrometeorites: cosmic spherules, scoriaceous and unmelted micrometeorites. Petrographic and compositional features of micrometeorites. Identification of micrometeorite parent bodies (primitive, evolved and differentiated asteroids, and comets). Micrometeorite statistics and the composition of the near Earth dust complex.
  13. Cosmic dust 2. IDP definition. IDP collection, IDP classification: CP- and CS-type. Primitive components in CS-type IDP: GEMS, presolar grains. The link to CM-CI asteroids of CP-type IDP. The link to comets of CP-type IDP. Samples of the most primitive materials.
  14. Chronology of the early solar system 1. 4.6 billion years ago in a molecular cloud: from dust to planets The solar nebula. Planet formation: Settling of circumstellar dust to the mid-plane of the disk. Growth of planetesimals. Runaway growth of planetary embryos. Growth of larger objects through late-stage collisions. Planet differentiation. Dating the early solar system. Long-lived and short-lived radioisotopes. CAI: time zero. Iron meteorites: remnants of first protoplanets? Chondrules: no longer building blocks of the planet forming era? 26Al and the evolution of planetesimals. Dating core formation in differentiated bodies through Hf - W systematics. Accretion of the Earth. Faster accretion of smaller bodies.
  15. Asteroids: a geologic context for meteorites. Asteroid categories (NEA, MAB, Trojans). Space missions to asteroids since 1991. Asteroid physical features. Spectroscopy and classification of asteroids. The asteroid meteorite connection. Asteroid distribution in MAB. Asteroid orbits, distributions and delivery to Earth.
  16. Chemical composition of anhydrous asteroids. 26Al and thermal evolution of anhydrous asteroids. Itokawa. Vesta.
  17. Comets and other ice bearing planetsemials. Icy Moons, Centaurus Objects, Kuiper Belt Objects, Oort Cloud Objects. Stardust and Rosetta missions.
  18. Early Earth. The Hadean. Formation of planet Earth. Formation of the Moon. The Earth after the giant impact Moon-forming event. Late heavy Bombardment (LHB). The early continuum rock record on Earth.
  19. Lab: Petrographic analyses and micronalyses of meteorites.
Bibliografia e materiale didattico

Diapositive fornite dal docente e alcuni libri di riferimento tra cui:

Generalità sulle Meteoriti

McSween H Y. (1999) Meteorites and their parent planets. Second Edition. Cambridge University Press, Cambridge, New York, pp 310; ~50 €

Cosmochimica delle Meteoriti

Lodders K., Fegley B. Jr (1998) The planetary scientist’s companion. Oxford University Press, pp. 362, ~10 €.

Petrografia delle Meteoriti

Lauretta D. & Killgore M. (2005) A color atlas of meteorites in thin section. Golden Retriever Publications and Southwest Meteorite Press, pp 301, ~70€.

Bibliography

McSween H Y. (1999) Meteorites and their parent planets. Second Edition. Cambridge University Press, Cambridge, New York, pp 310; ~50 €

Lodders K., Fegley B. Jr (1998) The planetary scientist’s companion. Oxford University Press, pp. 362, ~10 €.

Lauretta D. & Killgore M. (2005) A color atlas of meteorites in thin section. Golden Retriever Publications and Southwest Meteorite Press, pp 301, ~70€.

Indicazioni per non frequentanti

Sconsigliato

Modalità d'esame

Esame finale orale con voto

(tre momenti: petrografia, argomento a piacere, domande su altri temi trattati)

Assessment methods

Oral exam

Duration: 45-60 mins

Two parts:

1) Oral presentation with slides on your favorite topic.

Examples: Presolar grains, IDPs, planetary differentiation, martian meteorites etc.

>>> Expand your dataset and arguments with a critical literature review on the chosen topic!

2) Testing your general knowledge about planetary geology. A range of questions based on the contents of selected slides from the course's sets.

Note

Lezioni si svolgeranno in remoto udando la piattaforma TEAMS.

Updated: 17/09/2020 12:56