Modules | Area | Type | Hours | Teacher(s) | |
LABORATORIO SOFTWARE PER TELECOMUNICAZIONI | ING-INF/03 | LABORATORI | 60 |
|
Al termine del corso:
At the end of the course:
Al termine del corso, per l'accertamento delle conoscenze, allo studente verra chiesto di sostenere un colloquio in cui risponderà ad alcune domande relative agli argomenti trattati a lezione. Per accedere al colloquio sarà necessario superare un pre-test che valuti le conoscenze di MATLAB.
At the end of the course, he student will be asked to take an interview in which he will answer some questions relating to the topics covered in class with the goal of assessing her/his knowledge. To access the interview it will be necessary to pass a pre-test that evaluates the knowledge of MATLAB.
Al termine del corso, lo studente:
At the end of the course, the student:
Al termine del corso, per l'accertamento delle capacità acquisite, allo studente verrà chiesto di
At the end of the course, the student will be asked to:
Lo studente acquisirà una prima comprensione di quali siano i requisiti fondamentali per la progettazione ed il dimensionamento di un sistema di trasmissione dati radio.
The student will acquire a first understanding of what are the fundamental parameters for the design of a radio data transmission system.
Durante le sessioni di laboratorio sarà valutato il grado di comprensione delle attività svolte.
During the laboratory sessions, the degree of understanding of the activities carried out will be assessed.
Per poter frequentare con successo questo corso è necessario avere una conoscenza approfondita di
Sono richiesti anche lineamenti di:
Si raccomanda la frequenza del corso Fondamenti di Telecomunicazioni del primo semestre del terzo anno della laurea in Ingegneria delle telecomunicazioni.
In order to successfully attend this course you need to have a thorough knowledge of theory of signals and linear, time-invariant systems. As well as probability theory and theory of stochastic processes.
We recommend the attendance of Fundamentals of Telecommunications in the second semester of the second year of the degree in Telecommunications Engineering.
Nessuno in particolare
None in particular
Le lezioni si svolgono preferibilmente in aula ed in laboratorio informatico, a distanza se necessario. Le lezioni svolte in aula hanno l'obiettivo di dare un fondamento teorico agli argomenti svolti poi in laboratorio. In laboratorio, gli studenti hanno accesso ad un computer (potendo eventualmente utilizzare il proprio) per poter provare gli eseguibili in Labview o scrivere progammi in MATLAB.
La parte del corso su Labview sarà svolta in codocenza con l'Ing. Michelini.
Dalla metà del corso in poi, gli studenti utilizzeranno le SDR in laboratorio per trasmettere e ricevere segnali analogici.
Eventuale materiale didattico sarà distribuito tramite il portale di elearning di ateneo del corso.
Il docente sarà disponibile per il ricevimento tutte le settimane il Mercoledì dalle 15 alle 17 o , in alternativa, su appuntamento.
Lessons are preferably held in the classroom and in the computer lab, remotely if necessary. The lessons held in the classroom have the aim of giving a theoretical foundation to the topics then carried out in the laboratory. In the laboratory, students have access to a computer (possibly using their own) to be able to test the executables in Labview or write programs in MATLAB.
The part of the course on Labview will be conducted with the help of Marco Michelini.
From the middle of the course onwards, students will use the SDRs in the laboratory to transmit and receive analog signals.
Any teaching material will be distributed through the university's e-learning portal of the course.
The teacher will be available for the reception every week on Wednesday from 15 to 17 or, alternatively, by appointment.
Il corso si articola su quattro parti, non necessariamente disgiunte: teoria, Labview, MATLAB e SDR.
Teoria
Labview
MATLAB
SDR
The course is divided into four parts, not necessarily separated: theory, Labview, MATLAB and SDR.
Theory
Labview
Practical illustration of aliasing phenomena on audio signals. Realization of an AM transmitter with Labview. Case of sinusoidal modulating signal. Analysis of an amplitude modulation transmission system with inserted carrier. Use of the envelope detection receiver. Implementation of DSB transmitter and receiver. Simulation of phase and frequency errors at the DSB receiver. Analysis of an AM-SSB transmission system. Signal spectrum and coherent demodulation. Effect of phase and frequency variation of the local oscillator of the receiver with respect to the carrier. QAM modulation. Effects of cochannel interference due to phase errors at the receiver. Spectrum analysis of signals transmitted on separate but contiguous bands. Interference from adjacent channel: audio effects.
MATLAB
Introduction to MATLAB: user interface and use of the editor. How to debug in Matlab. Vectors, matrices and addressing methods. Types of variables and main commands. Example of a MATLAB scrip: generation of a sine and calculation of its FFT. Object-oriented programming: Classes and objects. Attributes and functions of a class. Logical and relational operators. Example of use of an object of class dsp.audioplayer and of an object of class comm.pskmodulator. Monte-Carlo simulation of an MQAM system: transmission and reception filters, decision strategy. Calculation of SER and BER. Eye chart and IQ chart. Monte-Carlo simulation for an MPSK system. BER and SER calculation. Recursive algorithm for Gray's coding. Simplified model of PAM transmitter and receiver.
SDR Description of the architecture and operating principles of the software defined radio: RTL-SDR and USRP. Configuration of the MATLAB script to drive a USRP in transmission, determination of the sampling rate value of the sound card, of the input signal to the USRP and of the FPGA within the USRP. Implementation of the AM transmitter for USRP: transmission of a sinusoidal tone. Implementation of the AM transmitter for USRP: transmission of an audio file. Implementation of the AM receiver for USRP. Implementation of the AM receiver for RTL-SDR. AM DSB reception with RTL-SDR. FM transmission with USRP. Receiving FM signals with USRP and RTL-SDR. Receiver sizing and filter sizing. Introduction to the FM stereo standard.
Essendo un laboratorio, il materiale didattico consiste principalmente di software che verrà distribuito tramite il portale di elarning dell’Ateneo.
Alcuni testi di riferimento: - T.S. Rappaport, "Wireless Communications: Principles and Practice", 2nd Edition. [Analog modulations]
- R.W. Stewart, K.W. Barlee, D.S.W. Atkinson, L.H. Crockett, "Software Defined Radio Using Matlab & Simulink and The Rtl-Sdr", University of Strathclide [SDR].
- J. Proakis, "Digital Communications", 5th Revised edition, McGraw-Hill, Prentice Hall. [Digital communications]
Being a laboratory, the teaching material mainly consists of software that will be distributed through the University's elarning portal.
Recommended reading includes:
- T.S. Rappaport, "Wireless Communications: Principles and Practice", 2nd Edition. [Analog modulations]
- R.W. Stewart, K.W. Barlee, D.S.W. Atkinson, L.H. Crockett, "Software Defined Radio Using Matlab & Simulink and The Rtl-Sdr", University of Strathclide [SDR].
- J. Proakis, "Digital Communications", 5th Revised edition, McGraw-Hill, Prentice Hall. [Digital communications]
L'esame è composto da due prove pratiche, che costituiscono il pre-test, ed una prova orale.
The exam consists of two practical tests and an oral test.The two practical tests aim to evaluate the Labview and MATLAB skills acquired during the year. Practical tests, each lasting about 20-30 minutes, are organized as follows:
The oral exam consists of an interview between the candidate and the teacher who aims to evaluate the skills and knowledge acquired by the student. The duration of the oral test is between 30 and 60 minutes