Scheda programma d'esame
CALCULUS
CARLO ROMANO GRISANTI
Academic year2023/24
CourseCOMPUTER SCIENCE
Code724AA
Credits12
PeriodSemester 1 & 2
LanguageItalian

ModulesAreaTypeHoursTeacher(s)
ANALISI MATEMATICAMAT/05LEZIONI96
CARLO ROMANO GRISANTI unimap
Obiettivi di apprendimento
Learning outcomes
Conoscenze

Questo corso è dedicato allo studio dell'analisi matematica: limiti, continuità, calcolo differenziale e integrazione, successioni serie e calcolo differenziale in più variabili.

Knowledge

This course is devoted to the study of calculus: limits, continuity, derivation and integration, sequences, series and differential calculus for functions of several variables.

 

Modalità di verifica delle conoscenze

Metodi:

  • Esame conclusivo scritto
  • Esame conclusivo orale

 

Assessment criteria of knowledge

Methods:

  • Final oral exam
  • Final written exam

 

 

Capacità

Esame qualitativo e quantitativo del comportamento di una funzione di variabile reale.

Calcolo di limiti, derivate e integrali. Convergenza di serie numeriche e integrali impropri. Massimi e minimi per funzioni di più variabili.

 

Skills

Qualitative and quantitative evaluation of the behaviour of a real function. 

Calculus of limits, derivatives and integrals. Convergence of series and generalized integrals. Extreme values for function of several variables.

 

Modalità di verifica delle capacità

Prove di verica intermedie in aula. Esercizi da svolgere a casa.

Assessment criteria of skills

Self evaluation tests.

Comportamenti

Lo studente imparerà a capire quali sono gli strumenti necessari a risolvere un problema di Analisi Matematica.

Behaviors

The student will learn which tools are appropriate to solve a problem related to mathematical analysis.

Modalità di verifica dei comportamenti

Nelle esercitazioni verranno analizzate le capacità degli studenti nell'affrontare un problema matematico.

Assessment criteria of behaviors

In practical classes the students will show their competence facing a mathematical problem.

Prerequisiti (conoscenze iniziali)

Nozioni di calcolo di base: disuguaglianze, trigonometria, funzione esponenziale, logaritmi, polinomi.

Prerequisites

Basic calculus: inequalities, trigonometry, exponential, logarithm, polynomial.

Indicazioni metodologiche

Lezioni frontali.

Attività di apprendimento:

  • seguire le lezioni
  • partecipare a discussioni
  • studio individuale

Frequenza consigliata.

Metodi di insegnamento:

  • Didattica in aula

 

Teaching methods

Delivery: face to face

Learning activities:

  • attending lectures
  • participation in discussions
  • individual study

Attendance: Advised

Teaching methods:

  • On line lectures and live lessons

 

Programma (contenuti dell'insegnamento)

Generalità sulle funzioni: dominio, codominio, immagine, grafico. Iniettività e surgettività. Funzioni pari, dispari, periodiche e monotone. Insiemi limitati. Massimo e minimo di un insieme. Estremi superiore e inferiore. Valore assoluto e disuguaglianza triangolare.

Continuità. Teorema dei valori intermedi. Teorema di Weierstrass. Continuità della funzione inversa.

Limiti. Punti di accumulazione e punti interni. Limiti da sinistra e da destra. Relazione fra continuità e limite. Unicità del limite. Teorema dei Carabinieri. Limite della funzione inversa. Teorema sulla permanenza del segno. Limite della composizione di funzioni. Limite di una funzione monotona. Infinitesimi e infiniti. Massimo e minimo di funzioni definite su insiemi non limitati. Asintoti.

Calcolo differenziale. Derivata. Derivate destra e snistra. Relazione fra derivabilità e continuità. Retta tangente al grafico. Derivate di ordine superiore al primo. Derivata della funzione inversa e della composizione di funzioni. Monotonia e segno della derivata. Punti di massimi o di minimo locali. Teoremi di Fermat, Rolle e Lagrange. Segno della derivata seconda nei punti di massimo o minimo locali. Teorema di De L'Hôpital. Formula di Taylor. Polinomi di Taylor delle funzioni elementari. Convessità. Punti angolosi e di cuspide. Grafico qualitativo di una funzione.

Calcolo integrale. L'integrale di Riemann. Integrabilità delle funzioni generalmente continue. Linearità dell'integrale. Additività rispetto all'intervallo di integrazione. Teorema della media integrale. Teorema fondamentale del calcolo integrale. Integrali con estremi di integrazione variabili. Integrazione per parti e per sostituzione. Integrale delle funzioni razionali.

Integrali su domini di integrazione non limitati e di funzioni non limitate nell'intorno di un punto. Criteri del confronto e del confronto asintotico. Assoluta integrabilità.

Successioni. Limite di una successione. Sotto-successioni. Teorema dei Carabinieri. Esistenza del limite e limitatezza. Successioni divergenti. Composizione tra successioni e funzioni. Criteri del rapporto e della radice. Il fattoriale.

Serie numeriche. Criteri del confronto, del confronto asintotico, del rapporto e della radice. Criterio di Leibniz. 

Funzioni di più variabili. Dominio, grafico e curve di livello. Limiti e continuità. Derivate parziali, differenziale e gradiente. Punti stazionari. Derivate seconde, matrice Hessiana. Massimi e minimi locali interni. Massimi e minimi su domini limitati e chiusi. Moltiplicatori di Lagrange.

 

Syllabus

Invertibility of a function: domain, image, graph. Even, odd, periodic and monotone functions. Bounded sets. Maximum and minimum of a set. Least upper bound and greatest lower bound of a set. Absolute value and triangle inequality.

Continuity. The intermediate value theorem. The extreme value theorem. Continuity of the inverse function.

Limits. Cluster points and interior points. Right-hand and left-hand limits. Connection between continuity and limit. Uniquenes of the limit. The squeeze theorem. Limit of the inverse of a function. Sign of a function and sign of its limit. Limit of the composition of functions. Limit and monotone functions. Infintesimal and infinite. Maximum and minimum for functions defined on a unboundet set. Asymptotes.

Differential calculus. Derivative. Right-hand and left-hand derivatives. Connection between differentiability and continuity. Tangent to a graph. Higher derivatives. Derivative of the inverse function and of the composition of functions. Monotonicity and sign of the derivative. Local extremals of a function. Fermat, Rolle and Lagrange theorems. Second derivative and extremals. De L'Hôpital theorem. Taylor formula. Taylor polinomials of elementary functions. Convexity. Cusp and vertex points. Qualitative graph of a function.

Sequences. Limit of a sequence. Subsequences. The squeeze theorem. Limit existence and boundedness. Diverging sequences. Composition between sequences and functions. Ratio and root criteria. The factorial.

Integral calculus. The Riemann integral. Integrability of piecewise continuous functions. Linearity of the integral. Additivity with respect to the integration inteval. Mean value theorem. Potential of a continuous function. Integrals with endpoints depending on a parameter. Integration by parts and by change of variable. Integral of a rational function.

Generalized integrals on unbouded domains and of unbouded functions. Numerical series.

Functions of several variables. Domain, graph and level curves. Limits and continuity. Partial derivatives, differential and gradient. Critical points. Second order derivatives, Hessian matrix. Local extremals in internal points. Extreme values on closed and bounded domains. Lagrange multipliers.

 

 

Bibliografia e materiale didattico

Gli appunti saranno a disposizione dopo ogni lezione svolta su Google Classroom a questo link: https://classroom.google.com/c/NjIyMjUwMjk3MTQ4?cjc=bazxeli

È attiva la piattaforma EVO LEARNING per esercitarsi con esercizi tratti da compiti d'esame degli anni precedenti al seguente link: https://evo.di.unipi.it/courses/2

I testi consigliati sono i seguenti:

  • ACERBI E., BUTTAZZO G.: Analisi matematica ABC. 1-Funzioni di una variabile, Pitagora Editrice, Bologna

    (2003)

  • BUTTAZZO G., GAMBINI G., SANTI E.: Esercizi di Analisi Matematica I, Pitagora Editrice, Bologna (1991).

  • AMAR M., BERSANI A.M.: Analisi Matematica 1 Esercizi e richiami di teoria, Edizioni LaDotta, Bologna (2012).

  • PAGANI C.D., SALSA S.: Analisi matematica 1, Zanichelli, Bologna (2015).

  • FUSCO N., MARCELLINI P., SBORDONE C. - Lezioni di analisi matematica due - Zanichelli, Bologna (2020).
  • ADAMS R. - Calcolo differenziale 1 - Casa Editrice Ambrosiana (2014).
  • ADAMS R. - Calcolo differenziale 2 - Casa Editrice Ambrosiana (2014).

I testi precedenti sono tutti in italiano. Per gli studenti stranieri che avessero necessità di un testo in inglese posso suggerire

  • ADAMS R.A., ESSEX C. - Calculus - A complete course - Pearson Education Canada (2010).
Bibliography
  • ACERBI E., BUTTAZZO G.: Analisi matematica ABC. 1-Funzioni di una variabile, Pitagora Editrice, Bologna

    (2003)

  • BUTTAZZO G., GAMBINI G., SANTI E.: Esercizi di Analisi Matematica I, Pitagora Editrice, Bologna (1991).

  • AMAR M., BERSANI A.M.: Analisi Matematica 1 Esercizi e richiami di teoria, Edizioni LaDotta, Bologna (2012).

  • PAGANI C.D., SALSA S.: Analisi matematica 1, Zanichelli, Bologna (2015).
  • FUSCO N., MARCELLINI P., SBORDONE C. - Lezioni di analisi matematica due - Zanichelli, Bologna (2020).
  • ADAMS R. - Calcolo differenziale 1 - Casa Editrice Ambrosiana (2014).
  • ADAMS R. - Calcolo differenziale 2 - Casa Editrice Ambrosiana (2014).
  • ADAMS R.A., ESSEX C. - Calculus - A complete course - Pearson Education Canada (2010).

Modalità d'esame

 

  • L’esame è composto da un test, una prova scritta e una prova orale.
  • Il test è propedeutico per la prova scritta che a sua volta lo è per la prova orale.
  • Il test e la prova scritta si svolgeranno, consecutivamente una all’altro, nei giorni previsti a calendario per le prove scritte.
  • Il test è formato da 10 domande a risposta chiusa. Ogni risposta esatta vale 2 punti, ogni risposta errata o non data vale 0 punti. Il test ha la durata di 75 minuti e non è permesso l’utilizzo di libri, appunti, strumenti di calcolo o di comunicazione.
  • Il test si intende superato con esito positivo solo se si ottiene un punteggio maggiore o uguale a 10.
  • La prova scritta consiste in 2 esercizi da svolgere giustificando i passaggi logici eseguiti. La prova ha la durata di 75 minuti e possono essere consultati appunti e libri. Il punteggio massimo conseguibile è 12. L’accesso alla prova scritta è subordinato al superamento del test.
  • L’accesso alla prova orale è subordinato al superamento del test e della prova scritta con somma dei punteggi maggiore o uguale a 18.
  • La prova orale è facoltativa. Nel caso che il voto di accesso sia superiore a 26 e lo studente decida di non sostenere la prova orale, gli verrà attribuito 26 come voto d’esame. Per avere un voto superiore a 26 è necessario sostenere la prova orale.
  • Nella prova orale lo studente deve mostrare di conoscere perfettamente le definizioni e i teoremi in programma, le relative dimostrazioni (quelle che sono state svolte nel corso) e saper utilizzare tali teoremi per affrontare un problema di tipo teorico.
  • È necessaria l’iscrizione elettronica alle prove scritte sul portale Valutami all’indirizzo https://esami.unipi.it/esami/. Il risultato della prova scritta verrà comunicato ai singoli candidati attraverso lo stesso sito. Le soluzioni dello scritto saranno disponibili in rete su Google classroom https://classroom.google.com/c/NjIyMjUwMjk3MTQ4?cjc=bazxeli
  • Si ricorda inoltre che per sostenere l’esame, sia scritto che orale, è necessario accertare l’identità del candidato; si raccomanda pertanto di portare con sé un documento d’identità valido.
Assessment methods
  • The exam consists of a multiple choice test, a written exam and an oral exam.
  • Each step is mandatory for the follwing one.
  • The multiple choice test and the written exam will take place, consecutively one to another, on the days scheduled for the written tests.
  • The test consists of 12 closed-ended questions. Each correct answer is worth 1 point, each wrong or not given answer is worth 0 points. The test lasts 90 minutes and is not allowed to use books, notes, calculation or communication tools.
  • The test is considered successful only if you get a score greater than or equal to 6.
  • The written exam consists of 3 exercises to be performed justifying the logical steps.
  • The test lasts 90 minutes and notes and books can be consulted. The maximum score achievable is 20. Access to the written exam is subject to passing the multiple choice test.
  • Access to the oral exam is subject to passing the multiple choice test and the written exam with a sum of scores greater than or equal to 18.
  • The oral exam is optional. In the event that the entrance mark is higher than 26 and the student decides not to take the oral exam, he will be awarded 26 as an exam mark. To have a mark above 26 you must take the oral exam.
  • In the oral exam the student must show to know perfectly the definitions and theorems in the program, the relative proofs (those that have been carried out in the course) and to be able to use these theorems to address a theoretical problem.
  • Electronic registration is required for the written tests on the portal Valutami  https://esami.unipi.it/esami/. The result of the written exam will be communicated to the individual candidates through the same website. Written solutions will be available online on Google classroom https://classroom.google.com/?????
  • It should also be remembered that to take the exam, both written and oral, it is necessary to ascertain the identity of the candidate; it is therefore recommended to bring with you a valid identity document.
Altri riferimenti web

http://pagine.dm.unipi.it/grisanti/

 

Additional web pages

http://pagine.dm.unipi.it/grisanti/

 

Updated: 11/09/2023 19:39