Scheda programma d'esame
SOLID STATE ELECTRONICS
MASSIMO MACUCCI
Academic year2023/24
CourseELECTRONIC ENGINEERING
Code195II
Credits6
PeriodSemester 2
LanguageItalian

ModulesAreaTypeHoursTeacher(s)
ELETTRONICA DELLO STATO SOLIDOING-INF/01LEZIONI60
ELISABETTA DIMAGGIO unimap
MASSIMO MACUCCI unimap
MASSIMO PIOTTO unimap
Obiettivi di apprendimento
Learning outcomes
Conoscenze

Gli studenti acquisiranno conoscenze sulla teoria, sui modelli e sul progetto di strutture e di  dispositivi a semiconduttore di ultima generazione (ad esempio in scala submicrometrica e nanometrica) utilizzando la meccanica quantistica di base. Saranno discusse risoluzioni analitiche e numeriche di semplici casi di studio.

 

Knowledge

Students are expected to acquire knowledge about theory, models and design of last generation semiconductor device structures , (e.g. at the submicrometric and nanometric scale) using basic quantum mechanics. Analytical and numerical resolutions of simple study cases will be discussed.

 

Modalità di verifica delle conoscenze

Durante l'esame orale lo studente deve essere in grado di dimostrare la propria conoscenza del materiale del corso e la sua capacita` di applicarlo alla valutazione e selezione di materiali per applicazioni nell'ambito della nanoelettronica.

Metodi:

Esame orale

 

Assessment criteria of knowledge

During the oral exam the student must be able to demonstrate his/her knowledge of the course material and his/her capability to apply it to the evaluation and selection of materials for nanoscale electronics applications.

Methods:

Final oral exam

Capacità

Lo studente sarà in grado di capire modelli quantistici di semplici strutture micro e nanoelettroniche.

Skills

The student will be able to understand quantum models of simple micro and nanoelectronic structures.

Modalità di verifica delle capacità

Attraverso le domande nell'esame orale.

Assessment criteria of skills

Through the questions during the oral exam.

Comportamenti

Lo studente svilupperà una mentalità idonea a comprendere ed eventualmente approfondire tematiche nel campo dell'elettronica fisica.

Behaviors

The student will develop skills suitable to understand and further investigate topics in the field of physical electronics.

Modalità di verifica dei comportamenti

Una verifica sara` condotta durante l'esame.

Assessment criteria of behaviors

An assessment will be performed during the exam.

Prerequisiti (conoscenze iniziali)

Nozioni di base di fisica e matematica (corsi del primo biennio di facoltà tecniche e scientiifche)

Prerequisites

Basic concepts in physiscs and mathematics (those taught in the first and second year classes of undergaduate programs in technical and scientific fields.

Indicazioni metodologiche

Il corso viene tenuto in italiano utilizzando slide che oono messe a disposizione dello studente tramite il sito e-learning. Le slide sono commentate e integrate con calcoli e precisazioni scritte a mano. Gli studenti possono usufruire del ricevimento e dell'indirizzo di posta elettronica dei docenti per chiarimenti tematici e organizzativi.

Teaching methods

The class is taught in Italian, using slides that are made available to the students via the e-learning web site. The slides are presented and integrated with handwritten calculations and comments. Students can obtain clarifications on specific topics and on organizational aspects during the instructors' office hours and contacting the instructors by e-mail.

Programma (contenuti dell'insegnamento)

 

Syllabus
  • Introductory topics
  • Wave equation
  • Wavelength vs. position
  • Lattice vibrations: phonons
  • Diffusion equation
  • Classical physics and microscopic phenomena
  • Critique of the classical concepts of matter and radiation
  • Radiation quantization
  • The photoelectric effect
  • Electron diffraction
  • Franck-Hertz experiment
  • De Broglie hypothesis
  • Uncertainty principle
  • De Broglie wavepacket
  • Definition of a system
  • Classical definition of the state of a system
  • New definition of the state of a system
  • Mean value of a dynamical variable
  • Operator algebra
  • Eigenvalues and eigenvectors of an operator
  • Generalized uncertainty relationship
  • Time evolution of the state of a system
  • Solution of the Scroedinger equation
  • Hilbert spaces
  • Orthonormal basis of functions
  • Matrix associated with an operator
  • Time evolution of of the mean value of dynamic variables
  • Further discussion of Hermitian operators
  • Constants of motion
  • Probability current density
  • Wave equation in momentum space
  • Numerical solution of the Schroedinger equation 
  • Finite differences time domain algorithm (FDTD)
  • Split-Step Fourier algortihtm
  • Legendre transformation and canonical equations
  • Poisson parentheses
  • Liouville theorem
  • Noether theorem
  • Stationary states in one-dimensional systems
  • Free particle
  • Potential wells
  • Infinite potential well
  • One-dimensional density of states
  • Numerical solution with the finite matrix method
  • Particle in a potential well of finite depth
  • Triangular potential well
  • Parabolic well: harmonic oscillator
  • Potential barriers
  • Transmission and scattering matrices
  • Potential step
  • Constant energy propagation 
  • Rectangular barrier
  • Dirac delta barrier
  • Periodic Dirac delta barrier and Bloch theorem
  • Commutator theorem
  • Bloch theorem
  • Array of rectangular barriers
  • Simple two-dimensional systems
  • Two identical particles in a one-dimensional box
  • Particle in a two-dimensional box
  • 2-dimensional electron gas
  • WKB method
  • Connection formulas
  • Applications of the WKB method
  • Potential well of arbitrary shape
  • Potential barrier of arbitraryt shape
  • Electrons in crystals
  • Direct and reciprocal lattice
  • Pauli principle
  • Necessity to introduce a new degree of freedom
  • Pauli exclusion principle
  • Free electron model in a solid
  • Estimate of the depth of a potential well
  • Classical and quantum statistics
  • Occupancy problem
  • Canonical statistics
  • Bose Einstein Statistics
  • Fermi Statistics
  • Semiclassical treatment of transport
  • Quasi momentum and effective mass
  • Boltzmann transport equation 
  • Relaxation time approximation
  • Approximate solution of the BTE
  • Quantum models of simple electron devices
  • Nanowire and conductance quantization 
  • MIM device
  • Density of states calculation
  • Simmons approximation for the tunnel coefficient
  • Evaluation of the tunnel current
Bibliografia e materiale didattico

Manuale "Elementi di Elettronica dello stato solido" Pisa University press.

Slide e altro materiale sul servizio di e-learning della Scuola di Ingegneria https://elearn.ing.unipi.it

Video e file pdf delle lezioni su http://brahms.iet.unipi.it/ess

 

Bibliography

Textbook "Elementi di Elettronica dello stato solido" Pisa University press.

Slides and additional material available on the e-learning service of the Engineering School https://elearn.ing.unipi.it

Videos and pdf files of the lectures available at http://brahms.iet.unipi.it/ess

 

Indicazioni per non frequentanti

Tutte le lezioni sono disponibili su Teams o sul sito http://brahms.iet.unipi.it, ricevimenti con i docenti possono essere fissati per e-mail o per telefono.

Non-attending students info

All lectures are available on Teams or athttp://brahms.iet.unipi.it, meetings with the instructors can be arranged by e-mail or by phone.

Modalità d'esame

L'esame e` orale e consiste di tre domande sugli argomenti trattati nel corso. Il voto finale e` la media dei voti ottenuti sulle tre domande. La durata media dell'esame e` di 30 minuti.

Assessment methods

There is an oral exam consisting of three questions on the topics covered in the class. The final grade is the average of the grades obtained for the three questions. The average duration of the exam is 30 minutes.

Altri riferimenti web

https://elearn.ing.unipi.it

Additional web pages

https://elearn.ing.unipi.it

Updated: 22/08/2023 17:08