Modules | Area | Type | Hours | Teacher(s) | |
MATEMATICA | MAT/05 | LEZIONI | 84 |
|
Lo studente potrà acquisire i primi elementi di logica e di operazione tra insiemi, assieme al concetto di funzione; quindi potrà apprendere gli aspetti teorici ma soprattutto pratici relativi al calcolo dei limiti di una funzione in una variabile (con particolare riferimento ai polinomi, alle funzioni razionali fratte, a quelle contenenti radici o termini di tipo esponenziale o logaritmico), al calcolo differenziale e all'integrazione per arrivare a risolvere le equazioni differenziali lineari del primo ordine e quelle a variabili separabili. Inoltre potrà acquisire i primi strumenti di stastistica descrittiva.
The student will be able to master basic notions of logic, sets, the notion of function, mainly considering powers, polynomials and the exponential function. Concerning Infinitesimal Calculus, the student will have the possibility to learn limits of functions of one real variable, then differential calculus and integration for functions of one real variable. Moroever the student will know what is a differential equation of first order; he will acquire some knowledge of the main indexes in descriptive statistics; he will learn the Gaussian reduction and the Cramer's rule to solve linear systems of equations.
The student's knowledge will be assessed through a written test, in any of the exam sessions.
Alla fine del corso lo studente sarà in grado di calcolare limiti e derivate di funzioni in modo da poter tracciare il grafico di una funzione; calcolare integrali di funzioni tramite, ad esempio, il metodo di integrazione per parti o il cambiamento di variabili; risolvere equazioni differenziali lineari del primo ordine, risolvere sistemi di equazioni in 3 incognite attraverso il metodo di Gauss e di Cramer, calcolare frequenze, media, mediana, moda e varianza di una variabile statistica discreta.
At the end of the course, the student will be able to study the main analytic and geometric properties of functions of one real variable. The student will be also able to apply Differential and Integral Calculus for specific problems involving functions of one real variable, to solve linear differential equations of the first order, or with separable variables; to solve linear systems by using Gaussian elimination and by Cramer's rule; to compute mean, moda, median, range and variance of statistical discrete distributions.
Le capacità acquisite dallo studente potranno essere accertate sia durante le esercitazioni in aula, sia nella correzione degli esercizi proposti durante il tutorato (e le cui risoluzioni gli studenti potranno inserire nella Classroom https://classroom.google.com/c/NTg5NjczODcxNDI4?cjc=ytbwzby che nella valutazione delle prove scritte d'esame.
The student skills will be verified both during the exercise sessions and in the final exam.
Lo studente potrà acquisire un metodo logico e operativo in relazione a problemi che si possano modellizzare tramite funzioni reali di una variabile reale. Tale metodo potrà applicarsi sia da un punto di vista teorico che applicativo.
The student will be able to get a method in dealing with problems that can be modeled by a real function of one real variable. This method can be applied following both a theoretical and an applied viewpoint.
La verifica della comprensione degli strumenti matematici presentati nel corso avverrà principalmente attraverso la valutazione degli esercizi assegnati per casa durante il tutorato (e inviati tramite piattaforma) e delle prove scritte d'esame.
The assessment of how the student is able to use the mathematical tools presented in the course will take place mainly through the evaluation of their homework assigned during the tutoring (and upload by the student on a platform) and of the final exam.
Le conoscenze richieste allo studente consistono nell'algebra elementare, specialmente in riferimento alla risoluzione di equazioni e di disequazioni di secondo grado. È inoltre richiesta la conoscenza dei primi elementi di geometria analitica.
The student is supposed to have a basic knowledge of elementary algebra, especially in relation to the solution of equations and inequalities arising from polynomials of second degree. Basic knowledge of Analytic Geometry is also required.
Le lezioni saranno tenute in presenza (o per via telematica) a seconda delle delibere degli organi competenti dell'Ateneo di Pisa. ll corso prevede 84 ore di lezione, con la presentazione degli aspetti teorici accompagnati da applicazioni e lo svolgimento di molti esercizi per tutti gli argomenti del corso.
Le lezioni si svolgono alla lavagna/mediante condivisione Ipad.
Nella classroom del corso sarà possibile per lo studente inserire, in itinere, gli esercizi di ricapitolazione su ciascun argomento assegnati dal docente in preparazione all'esame. Le risoluzioni proposte dallo studente saranno corrette dal docente con l'aiuto del tutor in modo che lo studente possa, durante il corso, ricevere indicazioni e chiarimenti sugli argomenti studiati.
The lessons will be held in the way decided by the Governance of the University of Pisa.The course provides 84 hours of lectures with presentation of theoretical aspects, applications and several exercises for each one of the topics of the course. Lectures are given on the blackboard/by Ipad.
Prima parte
Secondo parte: strumenti per lo studio di funzione
Limiti di successioni Definizione di limite. Il numero di Nepero. Teoremi di unicità del limite, di permanenza del segno, del confronto, dei carabinieri, del limite della somma, del prodotto, del quoziente. Forme indeterminate. Successioni monotone: esistenza del limite.
Terza parte: Integrazione ed equazioni differenziali del primo ordine.
Quarta parte. Ulteriori strumenti
LOGIC AND SETS. Concept of sets: elements, subsets, equality, union, intersection and difference. Numerical sets: N, Z, Q, R and their fundamental properties. Elements of mathematical language. Induction principle. Newton's binomial theorem.
POWERS, EXPONENTIALS AND LOGARITMS. Powers with integer exponent. Powers with rational exponent. Algebraic properties of powers. Inequalities between powers. Exponential functions: fundamental properties and related charts. Definition of logarithm: properties of logarithms, basis change formula.
FUNCTIONS. Function concept. Injective, surjective, invertible functions. Image set of a function. Even, odd, periodic, monotone functions. Axiom of continuity of real numbers. Numerical sets limited. Maximum and minimum of a set. Lower and upper extremes.
LIMITS. Limit of a succession of real numbers. Theorems of the uniqueness of the limit, of permanence of the sign, of the comparison, of "carabinieri", of the limit of the sum, of the product, of the quotient. Indefinite forms. Monotonic successions: existence of the limit. Limited successions. Definition of limit of a function. Theorems on function limits similar to those for successions. Important limits of functions. Notes on the order of infinitesimal and order of infinity.
DIFFERENTIAL CALCULUS IN A VARIABLE. Continuous functions and related theorems. Continuity of elementary functions. Theorems of existence of zeros, Weierstrass and intermediate values. Bisection method. Image of a continuous function on a range. Derivative of a function. Derivative of the sum, of the product, of the quotient, of the composition of functions. Calculation of the derivative of elementary functions. Links between continuity and derivability. Derivative of the inverse function and its calculation for elementary functions. Theorems of Rolle and Lagrange. Maxima and minima. Relationship between the sign of the derivative and the monotony. De l'Hopital theorem. Functions' study. Charts and their interpretation. Basic operations on the graphs; parity, disparity, frequency of a function, absolute value.
INTEGRAL CALCULATION IN A VARIABLE. Riemann Integral for limited functions over limited intervals. Geometric meaning. Integrability of monotonic functions and continuous functions. Properties of the integral. Integral function. The integral average theorem. Fundamental theorem of integral calculus. Primitives of a continuous function and their use for the calculation of defined integrals. Primitives of elementary functions. Integration formula for parts and for replacement. Integration of rational functions. Improper integrals.
ORDINARY DIFFERENTIAL EQUATIONS. What is an ordinary differential equation and what is a solution. Linear differential equations of first order or with separable variables; Cauchy's problem.
ELEMENTS OF DESCRIPTIVE STATISTICS: frequencies, data representation, position indexes (mean and median), dispersion indices (variance and standard deviation).
RESOLUTION OF LINEAR SYSTEM: by using Gaussian elimination and by Cramer's rule.
Testi consigliati
P. Marcellini – C. Sbordone: ELEMENTI DI CALCOLO – Liguori Editore – 2004
M. Abate: MATEMATICA E STATISTICA 4a ed. Le basi per le scienze della vita
M. Gobbino-M. Ghisi: Schede di analisi matematica- Editore: Esculapio
Per esercitarsi:
M. Gobbino-M. Ghisi: Esercizi per precorsi di matematica- Editore: Esculapio
P. Marcellini – C. Sbordone: ESERCITAZIONI DI MATEMATICA – Vol. I parte 1, Liguori Editore – 2013
P. Marcellini – C. Sbordone: ESERCITAZIONI DI MATEMATICA – Vol. I parte 2, Liguori Editore – 2014, 2017
Lo studente può inoltre trovare le dispense della docente, le slides delle lezioni, gli appunti delle lezioni, esercizi proposti e le tracce finora assegnate all'interno della classroom dell'anno di corso.
Recommended books
M. Gobbino-M. Ghisi: Esercizi per precorsi di matematica- Editore: Esculapio
P. Marcellini – C. Sbordone: ELEMENTI DI CALCOLO – Liguori Editore – 2004
P. Marcellini – C. Sbordone: ESERCITAZIONI DI MATEMATICA – Vol. I parte 1, Liguori Editore – 2013
P. Marcellini – C. Sbordone: ESERCITAZIONI DI MATEMATICA – Vol. I parte 2, Liguori Editore – 2014, 2017
M. Abate: MATEMATICA E STATISTICA, le basi per le scienze della vita – McGraw-Hill – 2017
Teacher's handouts and Lecture notes.
In alternativa al superamento della prova scritta totale, si richiede il superamento di due parziali (con una media aritmetica di almeno 18/31 tra i voti dei due parziali e almeno 16/31 su ciascuna parte).
OFA: Gli OFA risultano assolti tramite il superamento del Compitino di Matematica zero con un punteggio di almeno 7/10.
Distribuzione appelli:
Più precisamente:
Lo studente che risulta sufficiente al primo Parziale ma che non supera nessuna delle 2 prove relative al Secondo Parziale, deve sostenere l'esame totale (o l'anno successivo riprovare i parziali).
Si partecipa ad uno degli appelli sopra indicati previa iscrizione (obbligatoria) all'appello tramite la piattaforma https://esami.unipi.it/
Bonus Tutorato. La frequenza degli incontri di tutorato previsti (documentata dall’inserimento su piattaforma dello svolgimento di almeno il 70% degli esercizi assegnati durante tutto il percorso di tutorato) consente il riconoscimento di un ulteriore punto agli studenti che completano l'esame entro settembre 2024.
Voto finale. A coloro il cui voto dello scritto (o la media dei due parziali) è almeno 17, verranno riconosciuti in sede di registrazione dell’esame gli eventuali punti Bonus Matematica zero e bonus tutorato.
Durante la prova scritta non è consentito consultare testi, utilizzare PC, tablet, smartphone, apple watches, calcolatrici.
The exam is made up of two written tests. The first one is aimed to verify the knowledge of elementary algebra, especially in relation to the solutions of equations and inequalities. The second test is finalized to assess the student's ability to solve problems and exercises concerning the main topics of the course. The final mark will take into account the correctness and completeness in the written tests, active participation during lectures, exercises done during the course. The student who gets a score of at least 18 points in the written exam can ask an oral interview in order to increase his final mark. The oral exam is eventually required by the teacher to verify some unjustified aspects of the resolution of the written test. During the oral exam the student will be required to illustrate some aspects of the course topics (definitions, examples, properties, formulas, theorems, or applications).
It is possibile to split the second written exam in two parts. The first test takes place after the first half part of the course, the second one at the end of the course. During the written exam it is not permitted to consult texts, use PC, tablet or smartphone, electronic calculator devices.
Classroom: il materiale del corso viene caricato nella classroom 2023-24 https://classroom.google.com/c/NTg5NjczODcxNDI4?cjc=ytbwzby
Il gruppo Teams 2023-24 per eventuali comunicazione e per i ricevimenti online è
è https://teams.microsoft.com/l/team/19%3atgQsDzCIkl0d086pDexDBe-iOfTnjCSqOO9ogHixvPs1%40thread.tacv2/conversations?groupId=956d91b4-25c2-4816-94f6-779fb9bc726d&tenantId=c7456b31-a220-47f5-be52-473828670aa1