Scheda programma d'esame
GENETICS
STEFANO LANDI
Academic year2023/24
CourseBIOLOGICAL SCIENCES
Code082EE
Credits9
PeriodSemester 1 & 2
LanguageItalian

ModulesAreaTypeHoursTeacher(s)
GENETICABIO/18LEZIONI84
FEDERICA GEMIGNANI unimap
STEFANO LANDI unimap
Obiettivi di apprendimento
Learning outcomes
Conoscenze

Lo studente che completa con successo il corso avrà acquisito le conoscenze di base della Genetica. Avrà la capacità di definire l'eredità dei tratti mendeliani e dell'eredità legata al sesso. Inoltre acquisira' le conoscenza riguardo alle basi molecolari delle relazioni genotipo-fenotipo. Lo studente conoscera' come analizzare le mutazioni geniche e cromosomiche e apprendera' i principi per effettuare mappature genetiche in batteri e in eucarioti. Lo studente acquisira' anche conoscenze che permetterenno di comprendere la struttura genetica delle popolazioni.

Knowledge

The student who successfully completes the course will have acquired the basic knowledge of Genetics. He will have the ability to define the legacy of Mendelian traits and the inheritance linked to sex. He will also acquire knowledge about the molecular basis of the genotype-phenotype relationship. The student will know how to analyze gene and chromosomal mutations and will learn the principles for carrying out genetic mapping in bacteria and eukaryotes. The student will also acquire knowledge that will allow to understand the genetic structure of populations.

Modalità di verifica delle conoscenze

La verifica avviene tramite esame finale scritto (orale opzionale su richiesta)

Assessment criteria of knowledge

The exam consists in a written elaboration followed by an (optional) oral dissertation (upon request).

Capacità

Lo studente acquisisce (a) la capacità di risolvere problemi di genetica mendeliana; (b) sara' in grado di calcolare e mappare le distanze genetiche; (c) sara' in grado di calcolare gli indicatori piu' importanti che definiscono la struttura genetica di una popolazione

 

Skills

The student acquires (a) the ability to solve problems of Mendelian genetics; (b) will be able to calculate and map genetic distances; (c) will be able to calculate the most important indicators that define the genetic structure of a population

Modalità di verifica delle capacità

La verifica delle capacità acquisite avviene tramite la prova di esame con esercizi numerici e domande aperte

Assessment criteria of skills

The verification of acquired skills is through the test examination with numeric exercises and open questions

Comportamenti

Lo studente acquisirà la mentalità appropriata per analizzare alberi genealogici e progettare studi sperimentali di semplice genetica mendeliana approfondendo cosi' i metodi di sperimentazione in ambito biologico.

Behaviors

The student will acquire the appropriate mentality to analyze family trees and design experimental studies of simple Mendelian genetics, thus deepening the methods of experimentation in the biological field.

Modalità di verifica dei comportamenti

I comportamenti acquisiti si verificano tramite prova di esame con problemi numerici

Assessment criteria of behaviors

The verification of the learned behaviors will occur through examination by the use of numeric problems

Prerequisiti (conoscenze iniziali)

Conoscenze di base necessarie provenienti prevalentemente dai programmi di scuola superiore (meglio se a livello liceale) circa la biologia, la biologia molecolare (p.es. trascrizione e traduzione) e la chimica.

"Lo studente è invitato a verificare l'esistenza di eventuali propedeuticità consultando il Regolamento del Corso di studi relativo al proprio anno di immatricolazione. Un esame sostenuto in violazione delle regole di propedeuticità è nullo (Regolamento didattico d’Ateneo, art. 24, comma 3)

Prerequisites

Basic knowledge required mainly from high school (preferably high school level) programs on biology, molecular biology (e.g. transcription and translation) and chemistry.

"The student is invited to check the existence of any propedeuticity by consulting the Regulations of the Course of Study related to his or her matriculation year. An examination taken in violation of the rules of propedeuticity is null and void (University Teaching Regulations, Art. 24, paragraph 3)

Indicazioni metodologiche

Le lezioni sono prevalentemente frontali ma prevedeno anche esercitazioni pratiche e di laboratorio. Con le esercitazioni pratiche si svolgono esercizi di genetica in modalita' interattiva mediante l'utilizzo di Google Forms.

Attività didattiche che il corso comporta:

-     frequentare le lezioni
-     studio individuale
-     Lavoro di laboratorio pratico

Frequenza: consigliata

Metodi di insegnamento:

-     lezioni frontali
-     Apprendimento basato anche su esercizi numerici da svolgere interattivamente in aula mediante tablet/cellulare e GoogleForms.
-     laboratorio pratico

Teaching methods

The lessons are mainly frontal but also include practical and laboratory exercises. With the practical exercises, genetic exercises are carried out in an interactive way through the use of Google Forms.

Educational activities that the course involves:

- attend classes
- individual study
- Practical laboratory work

Frequency: recommended

Teaching methods:

-     frontal lessons
- Learning based also on numerical exercises to be carried out interactively in the classroom using a tablet / mobile phone and GoogleForms.
- practical workshop

Programma (contenuti dell'insegnamento)

Introduzione al corso.

Basi, deossinucleosidi, nucleotidi

La chimica del DNA. La regola di Chargaff.

La replicazione del DNA.

Le DNA polimerasi: tipi, processivita’, attivita’ esonucleasica. Appaiamenti non corretti ad opera di forme tautomeriche. L’attivita’ proof-reading.

Organizzazione del DNA eucariota in nucleosomi, fibra cromatinica, cromosomi.

Telomeri e telomerasi

Uno sguardo di insieme al genoma umano. Differenze tra genoma nucleare e mitocondriale. Mitosi. Fasi G1, S, G2, M. Interfase. Cromosomici interfasici e metafasici. Divisione cellulare (video).

Le fasi della mitosi. Le fasi della meiosi.

Profase della Meiosi I. Il complesso sinaptonemale. La struttura di Holliday. Il DNA eteroduplex.

Rappresentazione molecolare della meiosi. Dare un nome ad ognuno degli elementi dei cromosomi omologhi.

La prima legge di Mendel (Dominanza/recessività e legge della segregazione). Definizione di: gene, locus, allele, cromosoma omologo, linea pura, parentali, ibridi, monoibridi, incrocio monoibrido, allele, allele dominante, “allele wild-type”, “allele mutante”, allele recessivo, eterozigoti, omozigoti, omozigoti dominanti, omozigote recessivo, zigote, genotipo, fenotipo, locus genico, aploinsufficienza, aplosufficienza.

Rappresentazione molecolare della meiosi.

Una complicazione alle leggi di Mendel: eredita’ legata al sesso. Determinazione del sesso nei mammiferi e negli insetti. Incrocio maschio affetto x femmina wild-type; incrocio femmina affetta x maschio wild-type, stato alla F1 e alla F2. Analisi degli alberi genealogici. Esempi di analisi di alberi genealogici per caratteri autosomici recessivi. Caratteri autosomici recessivi: fenilchetonuria, albinismo, fibrosi cistica.

Alberi genealogici per caratteri autosomici dominanti. Nanismo acondroplastico, Sindrome di Marfan.

Corea di Huntington, Esadattilia, Brachidattilia, Piebaldismo. Analisi molecolare per identificazione di mutazioni (Southern Blot, Northern Blot, Western Blot).

Caratteri recessivi legati all’X. Esempi relativi al daltonismo, distrofia muscolare di Duchenne e Emofilia (fattore VIII). Altri esempi: sindrome della femminilizzazione testicolare.  Caratteri dominanti legati all’X. Esempi possibili: X-linked vitamin-D resistant hypo-phosphatemia, Sindrome di Rett, Sindrome AICARDI. L’inattivazione del cromosoma X (Lyonizzazione del cromoxoma X). Esempi di inattivazione dell’X: gatte caliche, gatte tartarugate, displasia ectodermica anidrotica.

Calcolo delle probabilita’ semplice. Frequenze osservate, frequenze attese e test del Chi-Quadrato.

Esercizi.

La seconda legge di Mendel. Utilizzo del Quadrato di Punnett o del calcolo delle probabilita’ per prevedere la progenie in F2 di incroci di di-ibridi. Segregazione fenotipica 9:3:3:1.

Esercizi dimostrativi

Le basi cromosomiche dell’assortimento indipendente. Sintesi di linee pure e la virescenza degli ibridi. Eredita’ extranucleare. Eteroplasmia.

Patologie legate al DNA mitocondriale.  Caratteri a penetranza e/o espressivita’ variabile. Esercizi di genetica mendeliana semplice

(eredità a singolo gene)

 

Interazioni tra alleli di un singolo locus (serie alleliche). Meccanismi della dominanza completa (aplosufficienza, aploinsufficienza, dominanza negativa, guadagno di funzione). Esempio della osteogenei imperfetta. Dominanza incompleta. Codominanza. Esempio del sistema di gruppi sanguigni ABO.

Serie alleliche. Alleli letali e relativa segregazione del carattere. Esempio di carattere quantitativo specificato da più loci (Quantitative trait loci). Caratteri distribuiti “a campana” per serie alleliche o per interazione tra loci (esempio di modello additivo dell’altezza).

Interazione di più loci appartenenti ad una medesima catena metabolica. Il lavoro di Beadle e Tatum. Ipotesi un gene=un enzima. Schema sperimentale dei mutanti di Neurospora crassa (da Beadle e Tatum).

La complementazione genica. Tra linee pure e studio dei gruppi di complementazione in vitro. Complementazione nelle famiglie e nelle linee cellulari.

Gruppi di complementazione.

 

Altre modalità di interazione tra loci distinti.

Prevedere la progenie sapendo il meccanismo di azione.

 Esempio del serpente corallo (pattern di colorazione a due pigmenti). Esempio di fiore a petalo blu/petalo bianco.

L’epistasi recessiva (esempio di fiore a petalo bianco, magenta, blu).

Ancora esempi di epistasi recessiva. Pigmentazione del manto del labrador.

L’epistasi dominante.Esempio della Digitalis purpurea. Colorazione degli occhi nell’uomo:

Divertitevi con questo link:

http://www.athro.com/evo/gen/genefr2.html

 

Nella stessa via metabolica della Fenilchetonuria blocchi selettivi possono provocare fenotipi specifici. Quadro metabolico dell feniclhetonuria, albinismo, cretinismo, tirosinosi e alcaptonuria. In onore di Arcibald Garrod che studiò “ gli errori congeniti del metabolismo”.

 

La soppressione. Prevedere il tipo di segregazione quando un mutante soppressore produce un fenotipo o quando non lo produce.

Principi di genetica batterica. La trasformazione. La coniugazione batterica. Il fattore F di fertilita’. I ceppi Hfr.

Esperimenti di coniugazione interrotta per definire l’ordine (in minuti) dei geni sul cromosoma di E. coli.

Ceppi Hfr differenti e ordinamento dei geni sul cromosoma batterico. Utilizzo della coniugazione per misurare le frequenze di ricombinazione tra geni contigui sul cromosoma procariota. I plasmidi F’. Diploidi parziali batterici. Meccanismi di formazione dei plasmidi F’.

Ricombinazione tra ceppi fagici differenti.

La trasduzione generalizzata e specializzata. Induzione zigotica. Formazione del genoma fagico lambda-delta.

Differenza nella segregazione (alla F2) di due loci quando sono indipendenti o quando sono “in linkage” (associati). Test del chi-quadro per indicare associazione o indipendenza. Uso del test-cross per svelare gli individui originati da gameti con combinazioni “parentali” o “ricombinanti”. Fase gametica, aplotipo, alleli in “cis” e alleli in “trans” (o in “repulsione”).

Chiasmi e crossing-over. Definizione di unita’ di mappa genetica. Unita’ di mappa genetica: centiMorgan, o percentuale di ricombinazione. Relazione tra distanza genetica e distanza fisica nel genoma umano. Calcolo della distanza di mappa genetica tra due loci. Mappatura dei cromosomici eucarioti tramite la ricombinazione: mappatura a due loci concatenati. Esercizi sulla mappatura a due loci. Predire la progenie attesa incrociando due diibridi con loci a distanza di mappa 30cM.

L’incrocio a tre punti (tre loci concatenati). Stabilire l’ordine e la distanza di mappa genetica di loci in linkage. Esercizi sull’incrocio a tre punti. Calcolo del coefficiente di coincidenza e interferenza.

Uno sguardo ravvicinato alla ricombinazione meiotica: il DNA eteroduplex e la struttura di Holliday.

Principi di Genetica di Popolazione: La legge di Hardy-Weinberg.

La legge di Hardy-Weinberg. Esercizi.

La deriva genetica.

La regolazione genica procariota.

- L’operone lac (lattosio).

Esercizi sui diploidi parziali.

Esercizi sui diploidi parziali.

- L’operone arabinosio.

L’attenuazione nell’operone triptofano.

La regolazione genica eucariota:

- Il regulone galattosio, le sequenze UAS,

le proteine Gal4, Gal80, TBP.

-l’effetto combinatorio dei fattori di trascrizione. Mating type in S.cerevisiae. Histone acetyl transferases (HAT). Histone deacetylases (HDAC). Histone methyl transferases (HMT), histone demethylases (LSD1).

-gli enhancere, il controllo dell’espressione genica, il  rimodellamento della cromatina. La proteina Tup1. Il complesso SWI/SNF.

-memoria epigenetica (Isole CpG, imprinting, 

-l’effetto di posizione (con particolare riferimento agli studi di Muller sui cromosomi politenici in Drosophila)

 

Gli effetti delle mutazioni geniche.

Anatomia di un gene eucariota.

Le sequenze rilevanti per i geni codificanti per proteine. Lo splicing. Mutazioni nelle regioni critiche dello splicing.

Mutazioni nelle regioni regolatrici di enhancer, promotore, 5’UTR, CDS (coding sequence), 3’UTR. Esempi di mutazioni nelle regioni regolatorie.

Syllabus

Topic

Introduction to the course.
Bases, deoxynucleosides, nucleotides
DNA chemistry. The Chargaff rule.
DNA replication.
DNA polymerases: types, processivity, exonuclease activity. Unsuitable pairing by tautomeric shapes. The proof-reading activity.
Eukaryotic DNA organization in nucleosomes, chromatin fiber, chromosomes.
Telomeres and telomerase
An overview of the human genome. Differences between the nuclear and mitochondrial genomes. Mitosis. Phases G1, S, G2, M. Interfase. Interphase and metaphasic chromosomes. Cellular division (video).
The phases of mitosis. The phases of meiosis.
Prophase of Meiosis I. The synaptonemal complex. The structure of Holliday. Heteroduplex DNA.
Molecular representation of meiosis. Give a name to each of the elements of the homologous chromosomes.
The first law of Mendel (Dominance / recessivity and the law of segregation). Definition of: gene, locus, allele, homologous chromosome, pure line, parental, hybrid, monohybrid, monohybrid cross, allele, dominant allele, "wild-type allele", "mutant allele", recessive allele, heterozygous, homozygous, dominant homozygotes , recessive homozygote, zygote, genotype, phenotype, gene locus, haploinsufficiency, aplosufficiency.
Molecular representation of meiosis.
A complication to the laws of Mendel: inheritance linked to sex. Determination of sex in mammals and insects. Affected male crossing x wild-type female; female crossing affected x male wild-type, status in F1 and F2. Analysis of family trees. Examples of analysis of family trees for autosomal recessive traits. Autosomal recessive characters: phenylketonuria, albinism, cystic fibrosis.
Family trees for dominant autosomal characters. Acondroplastic dwarfism, Marfan syndrome.
Huntington's disease, Hexadactyly, Brachydactyly, Piebaldism. Molecular analysis for identification of mutations (Southern Blot, Northern Blot, Western Blot).
Recessive characters related to X. Examples related to color blindness, Duchenne muscular dystrophy and hemophilia (factor VIII). Other examples: testicular feminization syndrome. Dominant characters related to X. Possible examples: X-linked vitamin-D resistant hypo-phosphatemia, Rett syndrome, AICARDI syndrome. Inactivation of the X chromosome (Lyonization of chromoxoma X). Examples of X inactivation: calats, tortoiseshell cats, anhydrotic ectodermal dysplasia.
Calculation of simple probabilities. Observed frequencies, expected frequencies and Chi-Square test.
Exercises.
The second law of Mendel. Using the Punnett Square or the probability calculation to predict the F2 offspring of di-hybrid crosses. Phenotypic segregation 9: 3: 3: 1.
Demonstration exercises
The chromosomal bases of the independent assortment. Synthesis of pure lines and the virescence of hybrids. Extranuclear inheritance. Heteroplasmy.
Pathologies related to mitochondrial DNA. Variable penetrance and / or expressivity characters. Simple Mendelian genetics exercises
(single gene inheritance)

Interactions between alleles of a single locus (allelic series). Mechanisms of complete dominance (aplosufficiency, haploinsufficiency, negative dominance, function gain). Example of imperfect osteogenei. Incomplete dominance. Codominance. Example of the ABO blood group system.
Allelic series. Lethal alleles and relative segregation of character. Example of quantitative character specified by several loci (Quantitative trait loci). "Bell-shaped" characters for allelic series or for interaction between loci (example of additive height model).
Interaction of several loci belonging to the same metabolic chain. The work of Beadle and Tatum. One gene hypothesis = an enzyme. Experimental scheme of Neurospora crassa mutants (from Beadle and Tatum).
Gene complementation. Between pure lines and study of in vitro complementation groups. Complementation in families and cell lines.
Complementation groups.

Other modes of interaction between distinct loci.
Predict the progeny knowing the mechanism of action.
 Example of the coral snake (two-pigment coloring pattern). Example of a blue petal flower / white petal.
The recessive epistasis (example of a petal-like flower in white, magenta, blue).
Still examples of recessive epistasis. Pigmentation of the labrador coat.
The dominant epistasis.Example of the Digitalis purpurea. Human eye coloration:
Have fun with this link:
http://www.athro.com/evo/gen/genefr2.html

In the same metabolic pathway of phenylketonuria selective blocks can cause specific phenotypes. Metabolic framework of pheniclhetonuria, albinism, cretinism, tyrosine and alkaptonuria. In honor of Arcibald Garrod who studied "the inborn errors of metabolism".

The suppression. Predict the type of segregation when a mutant suppressor produces a phenotype or when it does not produce it.

 

Principles of bacterial genetics. The transformation. Bacterial conjugation. F fertility factor. The Hfr strains.
Interrupted conjugation experiments to define the order (in minutes) of genes on the E. coli chromosome.
Different Hfr strains and ordering of genes on the bacterial chromosome. Use of conjugation to measure recombination frequencies between contiguous genes on the prokaryotic chromosome. Plasmids F ’. Bacterial partial diploids. Plasmid formation mechanisms F ’.
Recombination between different phage strains.
Generalized and specialized transduction. Zygotic induction. Formation of the lambda-delta phage genome.
Difference in the segregation (at F2) of two loci when they are independent or when they are "in linkage" (associated). Chi-square test to indicate association or independence. Use of the test-cross to reveal the individuals originating from gametes with "parental" or "recombinant" combinations. Gametic phase, haplotype, allis in "cis" and alleles in "trans" (or in "repulsion").
Chiasmus and crossing-over. Definition of genetic map unit. Genetic map unit: centiMorgan, or percentage of recombination. Relationship between genetic distance and physical distance in the human genome. Calculation of the genetic map distance between two loci. Eukaryotic chromosomal mapping through recombination: mapping to two concatenated loci. Exercises on mapping to two loci. Predict the expected offspring by crossing two dihybrid hybrids with 30cM distance map loci.
The three-point intersection (three concatenated loci). Establishing the order and distance of genetic map of loci in linkage. Three-point crossover exercises. Calculation of the coincidence and interference coefficient.
A closer look at meiotic recombination: the heteroduplex DNA and the Holliday structure.
Principles of Population Genetics: The Hardy-Weinberg law.
The law of Hardy-Weinberg. Exercises.
Genetic drift.
Prokaryotic gene regulation.
- The lac (lactose) operon.
Partial diploid exercises.
Partial diploid exercises.
- Arabinio operon.
The attenuation in the tryptophan operon.
Eukaryotic gene regulation:
- The galactose regulon, the UAS sequences,
the Gal4, Gal80, TBP proteins.
- the combinatorial effect of transcription factors. Mating type in S.cerevisiae. Histone acetyl transferases (HAT). Histone deacetylases (HDAC). Histone methyl transferases (HMT), histone demethylases (LSD1).
- the enhancers, the control of gene expression, the chromatin remodeling. The Tup1 protein. The SWI / SNF complex.
-epigenetic memory (CpG Islands, imprinting,
-the effect of position (with particular reference to Muller's studies on polytene chromosomes in Drosophila)

The effects of gene mutations.
Anatomy of a eukaryotic gene.
Sequences relevant for protein-coding genes. Splicing. Mutations in critical splicing regions.
Mutations in the regulatory regions of enhancer, promoter, 5'UTR, CDS (coding sequence), 3'UTR. Examples of mutations in regulatory regions.

Bibliografia e materiale didattico

"Genetica. Principi di analisi formale", by Anthony Griffiths (Zanichelli)

“Eserciziario di Genetica con guida alla soluzione” PICCIN. Ghisotti-Ferrari

Bibliography

"Genetica. Principi di analisi formale", by Anthony Griffiths (Zanichelli)

“Eserciziario di Genetica con guida alla soluzione” PICCIN. Ghisotti-Ferrari

Indicazioni per non frequentanti

tutte le info sono contenute sul sito ufficiale del corso e personale:

www.stefanolandi.eu

Non-attending students info

See the official website:

www.stefanolandi.eu

Modalità d'esame

E' prevista una prova scritta della durata di due ore consistente in domande aperte ed problemi numerici.

E' data facolta' di sostenere anche una prova orale su richiesta che potrebbe permettere di raffinare la valutazione della prova scritta di + / - 1 punto.

Questa puo' essere sostenuta in qualsiasi momento dopo la correzione della prova scritta (anche fuori dal periodo delle date degli appelli). Per accedere alla prova orale basta prendere un appuntamento inviando una posta elettronica.

Assessment methods

The exam is based on a written test lasting two hours and consisting of open questions and numerical problems.

It is also possible to take an oral test on request which could allow you to refine the evaluation of the written test by + / - 1 point.

This can be taken at any time after the correction of the written test (even outside the period of the exam dates). To access the oral exam, just make an appointment by sending an e-mail.

Altri riferimenti web

Cercare su Moodle o www.stefanolandi.eu

Additional web pages

E-learning

www.stefanolandi.eu

Note

Commissione esame:

Presidente: Prof. Stefano Landi

Membro: Prof. Federica Gemignani e Dottoressa Monica CIpollini.

Vice-presidente: Prof. Federica Gemignani

Supplenti membri: Prof. Daniele Campa, Prof. Roberto Giovannoni, Prof. Roberto Scarpato

Notes

Exam commission:

President: Prof. Stefano Landi

Members: Prof. Federica Gemignani; Dottoressa Monica CIpollini.

Vice-presidente: Prof. Federica Gemignani

Member substitutes: Prof. Daniele Campa, Prof. Roberto Giovannoni, Prof. Roberto Scarpato

Updated: 31/08/2023 15:28