Scheda programma d'esame
ANALISI MATEMATICA I - AN
ANGELA MARIA DALENA
Academic year2023/24
CourseTELECOMMUNICATIONS ENGINEERING
Code808AA
Credits12
PeriodSemester 1 & 2
LanguageItalian

ModulesAreaTypeHoursTeacher(s)
ANALISI MATEMATICA I - ANMAT/05LEZIONI130
CARLA ANTONI unimap
ANGELA MARIA DALENA unimap
Programma (contenuti dell'insegnamento)

Analisi Matematica 1, anno 2023-2024. Armi Navali

Legenda:
a) la numerazione dei teoremi fa riferimento al testo G. Giannuzzi Lezioni di analisi matematica Vol.1
b) dove compare (C.D.) si intende che il teorema `e stato dimostrato.
1. Nozioni preliminari
• Il corpo ordinato e completo R dei numeri reali.
• Maggioranti e minoranti di un insieme. Estremo inferiore e superiore.
• Caratterizzazione di inf e sup.
• Proprietà topologiche di R.

2. Funzioni e limiti di funzioni
• Funzioni reali di variabile reale. Restrizione, prolungamento, funzione composta. Funzioni monotone, invertibili e inverse.
• Estremo superiore e estremo inferiore di una funzione. Definizione di massimo e di minimo di una funzione.
• Proprietà locali di una funzione. Definizione di limite di una funzione.
• Teoremi sui limiti: Teorema 5.7.1. (C.D.). Proposizione 5.6.1.(C.D.). Teorema 5.6.1.. Teorema 5.7.4.(C.D. del prodotto). Teorema 5.7.7. ( C.D.). Teorema 5.7.8.. Teorema 5.7.9.. Teorema 5.7.10.. Teorema 5.7.13 (C.D.). Teorema 5.7.15. (C.D.). Teorema 5.8.1.(C.D.). Casi di indecisione.
• Limite di una successione. Relazione tra limite di una successione e delle relative sottosuccessioni. Successioni per ricorrenza.
• Limiti notevoli.
• Infinitesimi. Ordine, parte principale, equivalenza. Definizione di o piccolo. Teorema 5.10.1. (Principio di sostituzione degli infinitesimi) (C.D.). Proposizione 5.10.1..Proposizione 5.10.2..
• Infiniti. Ordine, parte principale, equivalenza. Principio di sostituzione degli infiniti.
• Asintoti del grafico di una funzione.

3. Continuità
• Definizione e prime proprietà.
• Teoremi sulle funzioni continue: di Weierstrass. Teorema 6.1.4. (C.D.). Teorema 6.1.5. (C.D.). Corollario 6.1.1..
• Algebra delle funzioni continue.
4. Calcolo differenziale
• Definizione di funzione derivabile in un punto. Derivabilità e continuità (C.D.). Regole di derivazione (C.D. del prodotto). Proposizione 7.3.3. (C.D.). Proposizione 7.3.4.(C.D.).
• Interpretazione geometrica della derivata.
• Derivate delle funzioni di uso corrente.
• Definizione di funzione derivabile in senso generalizzato.
• Differenziale di una funzione in un punto e approssimazione lineare. Proposizione 7.2.2.(C.D.). In interpretazione geometrica del differenziale.
• Derivate e differenziali successivi.
• Teoremi sulle derivate: Teorema 7.5.1.(di Fermat) (C.D.). Teorema 7.5.2. (C.D.). Teorema 7.5.3. (C.D.). Teorema 7.5.4.(C.D.), conseguenze del teorema di Lagrange (C.D.).
• Test di monotonia.
• Teoremi di de l’Hospital.
• Formula di Taylor col resto di Peano e col resto di Lagrange. Proprietà dei polinomi di Taylor.
• Ricerca dei punti di massimo e di minimo di una funzione.
• Funzioni convesse. Punti di flesso.
• Studio di funzioni e applicazioni.

5. Calcolo integrale
• Integrale indefinito. Regole di integrazione: per decomposizione, per parti (C.D.), per sostituzione.
• Integrazioni di funzioni razionali fratte. Sostituzioni razionalizzanti.
• Integrale di Riemann. Significato geometrico.
• Teorema 8.1.1.(C.D.). Teorema 8.1.2.. Teorema 8.1.3. (C.D.). Funzioni generalmente continue e loro integrabilità.
• Proprietà dell’integrale.
• Integrale definito.
• Funzione integrale e sue proprietà (C.D.).
• Teorema 8.3.1.. Teorema 8.8.1. (C.D.). Proposizione 8.8.1..
• Definizione di integrale improprio nel caso di funzioni illimitate in intervalli limitati. Teorema 8.10.1.. Teorema 8.10.3.(C.D.).
• Criteri di sommabilità. Teorema 8.10.4.(C.D.).
• Definizione di integrale improprio nel caso di funzioni definite in intervalli illimitati. Teorema 8.10.5.. Teorema 8.10.7..
• Criteri di sommabilità. Teorema 8.10.8..
6. Serie numeriche
• Definizione di serie come limite di somme parziali.
• Criterio generale di convergenza di Cauchy.
• Condizione necessaria per la convergenza di una serie.
• Serie geometrica, serie armonica, serie armonica generalizzata, serie telescopiche.
• Criteri di convergenza assoluta. Criterio del confronto. Criterio dell’ordine di infinitesimo (C.D.), cr citerio della radice (C.D.), criterio del rapporto (C.D.), corollari ai precedenti criteri, criterio dell’integrale.
• Criterio di Leibniz.(C.D.).
• Operazioni sulle serie
7. Equazioni differenziali
• Ordine di una equazione differenziale, equazione in forma normale.
• Equazioni differenziali del primo ordine a variabili separabili. Problema di Cauchy.
• Equazioni differenziali lineari del primo ordine. Problema di Cauchy.
• Equazioni di Bernoulli e di Manfredi.
• Equazioni differenziali lineari di ordine 2. Problema di Cauchy. Proprietà dell’operatore L (C.D.). Il nucleo di L come spazio vettoriale di dimensione 2 (C.D.) . Teorema 5.4.1.(Vol.II)(C.D.). Teorema 5.4.2. (Vol.II).
• Equazioni differenziali lineari a coefficienti costanti omogenee: ricerca di una base.
• Equazioni lineari a coefficienti costanti non omogenee. Ricerca di una soluzione particolare: metodo della funzione simile.
• Metodo della variazioni delle costanti

MATHEMATICAL ANALYSIS I - A.Y. 2023/2024

1st Class NAVAL WEAPONS

PROFESSOR: A.M. Dalena

 

Legend:

  1. a) the numbering of the theorems refers to the text G. Giannuzzi Lessons of analysis

mathematics Vol.2

  1. b) where (C.D.) appears it means that the theorem has been proven.

 

  1. Preliminary notions
  • The ordered and complete body R of real numbers.
  • Majors and minors of a set. Lower and upper bound.
  • Characterization of lower and upper.
  • Topological properties of R.

 

  1. Functions and limits of functions
  • Real functions of real variable. Restriction, prolongation, compound function. Monotonic, invertible and inverse functions.
  • Upper bound and lower bound of a function. Definition of maximum and minimum of a function.
  • Local properties of a function. Definition of limit of a function.
  • Limit theorems: Theorem 5.7.1. (CD.). Proposition 5.6.1.(C.D.). Theorem 5.6.1.. Theorem 5.7.4.(C.D. of the product). Theorem 5.7.7. (C.D.). Theorem 5.7.8.. Theorem 5.7.9.. Theorem 5.7.10.. Theorem 5.7.13 (C.D.). Theorem 5.7.15. (CD.). Theorem 5.8.1.(C.D.). Cases of indecision.
  • Limit of a succession. Relationship between the limit of a sequence and its subsequences. Successions by recurrence.
  • Notable limitations.
  • Infinitesimals. Order, main part, equivalence. Definition of or small. Theorem 5.10.1. (Principle of substitution of infinitesimals) (C.D.). Proposition 5.10.1..Proposition 5.10.2..
  • Infinite. Order, main part, equivalence. Principle of substitution of infinities.
  • Asymptotes of the graph of a function.

 

  1. Continuity
  • Definition and first properties.
  • Theorems on continuous functions: by Weierstrass. Theorem 6.1.4. (CD.). Theorem 6.1.5. (CD.). Corollary 6.1.1..
  • Algebra of continuous functions.

 

  1. Differential calculus
  • Definition of differentiable function in a point. Derivability and continuity (C.D.). Derivation rules (product C.D.). Proposition 7.3.3. (CD.). Proposition 7.3.4.(C.D.).
  • Geometric interpretation of the derivative.
  • Derivatives of commonly used functions.
  • Definition of differentiable function in a generalized sense.
  • Differential of a function in a point and linear approximation. Proposition 7.2.2.(C.D.). Geometric interpretation of the differential.
  • Subsequent derivatives and differentials.
  • Theorems on derivatives: Theorem 7.5.1.(Fermat) (C.D.). Theorem 7.5.2. (CD.). Theorem 7.5.3. (CD.). Theorem 7.5.4.(C.D.), consequences of Lagrange's theorem (C.D.).
  • Monotonicity test.
  • De l'Hospital's theorems.
  • Taylor formula with Peano remainder and Lagrange remainder. Properties of Taylor polynomials.
  • Finding the maximum and minimum points of a function.
  • Convex functions. Inflection points.
  • Study of functions and applications.

 

  1. Integral calculus
  • Indefinite integral. Integration rules: by decomposition, by parts (C.D.), by substitution.
  • Integrations of fractional rational functions. Rationalizing substitutions.
  • Riemann integral. Geometric meaning.
  • Theorem 8.1.1.(C.D.). Theorem 8.1.2.. Theorem 8.1.3. (CD.). Generally continuous functions and their integrability.
  • Properties of the integral.
  • Definite integral.
  • Integral function and its properties (C.D.).
  • Theorem 8.3.1.. Theorem 8.8.1. (CD.). Proposition 8.8.1..
  • Definition of improper integral in the case of unlimited functions in limited intervals. Theorem 8.10.1.. Theorem 8.10.3.(C.D.).
  • Summability criteria. Theorem 8.10.4.(C.D.).
  • Definition of improper integral in the case of functions defined in unlimited intervals. Theorem 8.10.5.. Theorem 8.10.7..
  • Summability criteria. Theorem 8.10.8..

 

  1. Numerical series
  • Definition of series as limit of partial sums.
  • General Cauchy convergence criterion.
  • Necessary condition for the convergence of a series.
  • Geometric series, harmonic series, generalized harmonic series, telescopic series.
  • Absolute convergence criteria. Comparison criterion. Criterion of the order of infinitesimal (C.D.), criterion of the root (C.D.), criterion of the ratio (C.D.), corollaries to the previous criteria, criterion of the integral.
  • Leibniz criterion.(C.D.).
  • Operations on series

 

  1. Differential equations
  • Order of a differential equation, equation in normal form.
  • First order differential equations with separable variables. Cauchy problem.
  • First order linear differential equations. Cauchy problem.
  • Bernoulli and Manfredi equations.
  • Linear differential equations of order 2. Cauchy problem. Properties of the L operator (C.D.). The nucleus of L as a vector space of dimension 2 (C.D.). Theorem 5.4.1.(Vol.II)(C.D.). Theorem 5.4.2. (Vol. II).
  • Linear differential equations with constant homogeneous coefficients: search for a basis.
  • Linear equations with non-homogeneous constant coefficients. Searching for a particular solution: similar function method.
  • Method of variations of constants.
Syllabus

MATHEMATICAL ANALYSIS I - A.Y. 2023/2024

1st Class NAVAL WEAPONS

PROFESSOR: A.M. Dalena

 

Legend:

  1. a) the numbering of the theorems refers to the text G. Giannuzzi Lessons of analysis

mathematics Vol.2

  1. b) where (C.D.) appears it means that the theorem has been proven.

 

  1. Preliminary notions
  • The ordered and complete body R of real numbers.
  • Majors and minors of a set. Lower and upper bound.
  • Characterization of lower and upper.
  • Topological properties of R.

 

  1. Functions and limits of functions
  • Real functions of real variable. Restriction, prolongation, compound function. Monotonic, invertible and inverse functions.
  • Upper bound and lower bound of a function. Definition of maximum and minimum of a function.
  • Local properties of a function. Definition of limit of a function.
  • Limit theorems: Theorem 5.7.1. (CD.). Proposition 5.6.1.(C.D.). Theorem 5.6.1.. Theorem 5.7.4.(C.D. of the product). Theorem 5.7.7. (C.D.). Theorem 5.7.8.. Theorem 5.7.9.. Theorem 5.7.10.. Theorem 5.7.13 (C.D.). Theorem 5.7.15. (CD.). Theorem 5.8.1.(C.D.). Cases of indecision.
  • Limit of a succession. Relationship between the limit of a sequence and its subsequences. Successions by recurrence.
  • Notable limitations.
  • Infinitesimals. Order, main part, equivalence. Definition of or small. Theorem 5.10.1. (Principle of substitution of infinitesimals) (C.D.). Proposition 5.10.1..Proposition 5.10.2..
  • Infinite. Order, main part, equivalence. Principle of substitution of infinities.
  • Asymptotes of the graph of a function.

 

  1. Continuity
  • Definition and first properties.
  • Theorems on continuous functions: by Weierstrass. Theorem 6.1.4. (CD.). Theorem 6.1.5. (CD.). Corollary 6.1.1..
  • Algebra of continuous functions.

 

  1. Differential calculus
  • Definition of differentiable function in a point. Derivability and continuity (C.D.). Derivation rules (product C.D.). Proposition 7.3.3. (CD.). Proposition 7.3.4.(C.D.).
  • Geometric interpretation of the derivative.
  • Derivatives of commonly used functions.
  • Definition of differentiable function in a generalized sense.
  • Differential of a function in a point and linear approximation. Proposition 7.2.2.(C.D.). Geometric interpretation of the differential.
  • Subsequent derivatives and differentials.
  • Theorems on derivatives: Theorem 7.5.1.(Fermat) (C.D.). Theorem 7.5.2. (CD.). Theorem 7.5.3. (CD.). Theorem 7.5.4.(C.D.), consequences of Lagrange's theorem (C.D.).
  • Monotonicity test.
  • De l'Hospital's theorems.
  • Taylor formula with Peano remainder and Lagrange remainder. Properties of Taylor polynomials.
  • Finding the maximum and minimum points of a function.
  • Convex functions. Inflection points.
  • Study of functions and applications.

 

  1. Integral calculus
  • Indefinite integral. Integration rules: by decomposition, by parts (C.D.), by substitution.
  • Integrations of fractional rational functions. Rationalizing substitutions.
  • Riemann integral. Geometric meaning.
  • Theorem 8.1.1.(C.D.). Theorem 8.1.2.. Theorem 8.1.3. (CD.). Generally continuous functions and their integrability.
  • Properties of the integral.
  • Definite integral.
  • Integral function and its properties (C.D.).
  • Theorem 8.3.1.. Theorem 8.8.1. (CD.). Proposition 8.8.1..
  • Definition of improper integral in the case of unlimited functions in limited intervals. Theorem 8.10.1.. Theorem 8.10.3.(C.D.).
  • Summability criteria. Theorem 8.10.4.(C.D.).
  • Definition of improper integral in the case of functions defined in unlimited intervals. Theorem 8.10.5.. Theorem 8.10.7..
  • Summability criteria. Theorem 8.10.8..

 

  1. Numerical series
  • Definition of series as limit of partial sums.
  • General Cauchy convergence criterion.
  • Necessary condition for the convergence of a series.
  • Geometric series, harmonic series, generalized harmonic series, telescopic series.
  • Absolute convergence criteria. Comparison criterion. Criterion of the order of infinitesimal (C.D.), criterion of the root (C.D.), criterion of the ratio (C.D.), corollaries to the previous criteria, criterion of the integral.
  • Leibniz criterion.(C.D.).
  • Operations on series

 

  1. Differential equations
  • Order of a differential equation, equation in normal form.
  • First order differential equations with separable variables. Cauchy problem.
  • First order linear differential equations. Cauchy problem.
  • Bernoulli and Manfredi equations.
  • Linear differential equations of order 2. Cauchy problem. Properties of the L operator (C.D.). The nucleus of L as a vector space of dimension 2 (C.D.). Theorem 5.4.1.(Vol.II)(C.D.). Theorem 5.4.2. (Vol. II).
  • Linear differential equations with constant homogeneous coefficients: search for a basis.
  • Linear equations with non-homogeneous constant coefficients. Searching for a particular solution: similar function method.
  • Method of variations of constants.
Updated: 06/11/2023 10:09