Scheda programma d'esame
FISICA TEORICA 1
ENORE GUADAGNINI
Anno accademico2017/18
CdSFISICA
Codice213BB
CFU9
PeriodoPrimo semestre
LinguaItaliano

ModuliSettore/iTipoOreDocente/i
FISICA TEORICA 1FIS/02LEZIONI54
ENORE GUADAGNINI unimap
Learning outcomes
Knowledge

This course is an introduction to quantum field theories, which are generally used to describe fundamental interactions and quantum many-body systems in condensed matter physics. In particular, the course introduces the standard model of the fundamental interactions, and other effective quantum field theories which allow us to describe high-energy processes. The course is supposed to provide the main tools to obtain quantitative information for high-energy processes, such as cross sections and decay rates of particles, at the leading order of perturbation theory using the technique of the Feynman diagrams, starting from any effective quantum field theory.

Assessment criteria of knowledge

In the written exam (4 hours), where the student must solve a problem with several questions, he must demonstrate his/her ability in handling quantum field theories describing fundamental processes, and the methods to compute their quantitative features. With the oral exam, the student must demonstrate the ability to approach a circumscribed research problem, and organise an effective exposition of the results.

Methods:

  • Final oral exam
  • Final written exam
Teaching methods

Delivery: face to face

Learning activities:

  • attending lectures
  • participation in discussions
  • individual study
  • group work

Attendance: Advised

Teaching methods:

  • Lectures
  • Task-based learning/problem-based learning/inquiry-based learning
Programma (contenuti dell'insegnamento)

Ampiezza e sezione d’urto per scattering elastico in Meccanica Quantistica.
Funzione di Green per equazione di Helmholtz, Approssimazione di Born.

Particelle identiche, spazio di Fock , operatore campo in rappresentazione di interazione , ordinamento temporale , covarianza relativistica dei campi , lagrangiana libera e lagrangiana di interazione , Teorema di Noether ,
simmetrie continue , gruppi U(1) ed SU(2) e loro rappresentazioni.

Operatori di campo , funzioni d’onda , campi scalari, vettoriali e spinoriali , bilineari covarianti, spinori di Weyl , simmetrie discrete.
Elettrodinamica spinoriale , campi , lagrangiana , invarianza di gauge, accoppiamento minimale , elettrodinamica scalare.

Marice-S , calcolo delle ampiezze di transizione , larghezza decadimento , sezione d’urto. Propagatore di Feynman , Teorema di Wick , diagrammi di Feynman.

Syllabus

The main arguments are: second quantization, quantum field theory, invariant perturbation theory, Feynman diagrams for the calculation of matrix elements of scattering processes and decay rates within the quantum electrodynamics, the standard model of electroweak interactions, and more generally for any quantum field theory defined by a local lagrangian. The course consists of about 60 classes, of which about a half are dedicated to the applications and problems.

Ultimo aggiornamento 20/06/2018 17:25