Scheda programma d'esame
CHEMISTRY FOR SUSTAINABLE DEVELOPMENT
VALTER CASTELVETRO
Academic year2016/17
CourseINDUSTRIAL CHEMISTRY
Code161CC
Credits9
PeriodSemester 1 & 2
LanguageItalian

ModulesAreaTypeHoursTeacher(s)
CHIMICA PER LO SVILUPPO SOSTENIBILE CHIM/04LEZIONI72
VALTER CASTELVETRO unimap
Programma non disponibile nella lingua selezionata
Learning outcomes
Knowledge
The student will complete che course with a broad understanding of both direct and indirect environmental implications of the various stages of a chemical production and of the following life cycle of the product, from the exploitation of natural resources to the final disposal/recycling. He will be able to apply a correct methodology to identify and quantitatively evaluate the critical points of a chemical production process or of a product life cycle, using both the classical "green chemistry" indicators and the parametrization for the relevant environmental, economic and social issues. He/she will have a solid knowledge of both conventional and innovative energy production, conversion and storage technologies, being capable of critically evaluate their positive and negative implications. A last asset will be the knowledge of the state of the art and future trends of the intertwined energy production and chemical industry based on renewable resources.
Assessment criteria of knowledge
The student is expected not only to demonstrate a thorough knowledge of the given general topic he/she is discussing, but also to pinpoint the critical features that may or may not support the qualification of a process, product, material or technology as being sustainable. For the evaluation by conventional oral exam the student should be able to identify the main features of a process, product, material or technology that must be considered and quantitatively evaluated to determine its competitiveness in terms of environmental, economic and social impact. For the evaluation based on a personal in-depth analysis on a specific topic the student is expected to present, with the aid of ICT tools, possibly quantitative in addition to qualitative data supporting the statement of improved sustainability. For this purpose, knowledge of the LCA methodology, scope and limitation is also expected.

Methods:

  • Final oral exam
  • Oral report

Further information:
The student has an option of either a undergoing a conventional oral exam (which will cover two topics, one of which chosen by the examinator) or a mixed evaluation consisting in an oral exam (50 % score) and in the presentation and discussion of the results of a personal in-depth analysis focused on a subject, related to the course program, agreed upon with the examinator.

Teaching methods

Delivery: face to face

Learning activities:

  • attending lectures
  • preparation of oral/written report
  • individual study
  • Bibliography search

Attendance: Advised

Teaching methods:

  • Lectures

Syllabus
The course is divided in three main sections. 1) A comprehensive approach to sustainable chemical process, products and materials, including the classical "green chemistry” rules for the design and quantitative evaluation of new synthetic schemes, new solvents and new ways to activate chemical reactions, as well as the definition and parametrisation of the key environmental, economic and social issues. 2) Energy production, conversion and storage based on the conventional oil economy versus the new technologies for energy production from renewable resources, efficient conversion and storage. 3) The life cycle concept and the options for its extension, including a general knowledge of the LCA methodology, the end-of-life options and the relevant technologies (solid waste treatment, energy recovery, polymer recycling), and the new developments towards a “green economy” involving the conversion of the chemical and energy production industry into a new one based on renewable resources.
Bibliography
Suggested, although not exhaustive, readings include the following reference books, in addition to the specific scientific literature highlighted during the classroom presentations and the presentation material made available to the students: 1) F. Cavani, G. Centi, S. Perathoner, F. Trifiro´…(Editori), Sustainable Industrial Chemistry, Wiley (2009). 2) A. Lapkin, D. Constable (Editors), Green Chemistry Metrics: Measuring and Monitoring Sustainable Processes, Wiley-Blackwell (2008). 3) M. Lancaster, Green Chemistry: An Introductory Text - 2nd Edition, The Royal Society of Chemistry, 2010. 4) David Plackett (Ed): "Biopolymers: New Materials for Sustainable Films and Coatings". (available from the course lecturer)   5) A.Azapagic, A.Emsley, I.Hamerton : “Polymers: The Environment and Sustainable Development” , Wiley (2003).(available from the course lecturer) 6) M. Lancaster “Green Chemistry: An Introductory Text” (available from the course lecturer) 7) F.M. Kerton "Alternative Solvents for Green Chemistry" (available from the course lecturer)
Updated: 14/11/2016 17:27