Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa MECCANICA CELESTE

GIOVANNI FEDERICO GRONCHI

Anno accademico 2017/18
CdS MATEMATICA
Codice 142AA
CFU 6

Moduli Settore/i Tipo Ore
MECCANICA CELESTE/a MAT/07 LEZIONI 42

Docente/i
GIULIO BAU'
GIOVANNI FEDERICO
GRONCHI
ANDREA MILANI
COMPARETTI

Obiettivi di apprendimento

Conoscenze

Il corso si propone di presentare alcuni aspetti del problema degli N corpi.

Modalità di verifica delle conoscenze

La verifica delle conoscenze sarà svolta tramite un esame orale.

Capacità

Lo studente sara' in grado di trattare le singolarita' del problema degli N corpi, di mostrare l'esistenza di alcune classi di orbite periodiche e di comprandere meglio alcuni fenomeni caotici.

Modalità di verifica delle capacità

Durante il corso, saranno mostrati diversi esempi con riferimento ai differenti argomenti trattati.

Comportamenti

Lo studente potrà comprendere meglio alcuni aspetti del problema degli N corpi.

Modalità di verifica dei comportamenti

Durante le lezioni gli studenti saranno frequentemente coinvolti nella discussione delle argomentazioni e dei metodi utilizzati.

Prerequisiti (conoscenze iniziali)

Alcuni elementi di Meccanica Celeste.

Programma (contenuti dell'insegnamento)

Singolarità del problema degli N corpi:

- introduzione al problema degli N corpi,
- integrali primi e riduzione,
- collisioni e pseudo-collisioni, congettura di Painlevé,
- · teorema di Von Zeipel.

Soluzioni periodiche del problema degli N corpi:

- soluzioni di Eulero e Lagrange per il problema dei 3 corpi,
- l'orbita periodica a forma di otto di Chenciner-Montgomery,
- esistenza di alcune classi di orbite periodiche con metodi variazionali.

Regolarizzazione delle collisioni:

• regolarizzazioni del problema dei 2 corpi di Levi-Civita, di Kustaanheimo-Stiefel, di Moser, di Sperling-Burdet,

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

- regolarizzazioni locali e globali del problema dei 3 corpi,
- metodo della variazione dei parametri per trovare set di elementi nonsingolari alternativi agli elementi Kepleriani.

Determinazione orbitale caotica:

- esponenti di Lyapounov e metodi effettivi per stimarli. Relazione tra esponente di Lyapounov e costante di Lipschitz. Caso Hamiltoniano: proprieta' della matrice di transizione di stato. Orizzonte di predicibilita' e limite di computatbilita',
- determinazione orbitale: equazione normale. Cenni allo Shadowing lemma. Determinazione di un parametro dinamico. Risultati nel caso ordinato, nel caso caotico. Soluzioni locali o multiarco. Come oltrepassare il limite di computabilita.
- Applicazioni: determinazione orbitale in presenza di un grande numero di incontri ravvicinati. Missioni spaziali con tour dei satelliti.
 Un problema, e la sua soluzione, per il futuro.

Bibliografia e materiale didattico

- C. Siegel and J. Moser: Lectures on Celestial Mechanics, Springer
- · V. Szebehely: Theory of orbits, Univ. of Arizona press
- · some research papers suggested during the course

Modalità d'esame

- L'esame è composto da una prova orale.
- La prova orale consiste in un'interrogazione alla lavagna, o su foglio, nella quale lo studente dovra' dimostrare di aver appreso gli argomenti del corso. La prova orale potra' anche essere in forma di seminario, previo accordo con i docenti.
- La prova orale è superata se il candidato avra' dimostrato di aver acquisito sufficiente dimestichezza con gli argomenti e le tecniche oggetto del corso.

Ultimo aggiornamento 28/07/2017 16:39