Sistema centralizzato di iscrizione agli esami Programma

2020/21

<u>Università di Pisa</u>

AUTOMATION AND DRIVES

ANTONIO BICCHI

Anno accademico

CdS

CARTA E DEL CARTONE
Codice 940II
CFU 12

Moduli Settore/i Tipo Ore Docente/i

AUTOMATION AND ING-IND/26 LEZIONI 60 RICCARDO BACCI DI

DRIVERS A CAPACI

LUCA BILANCIONI

TECNOLOGIA E PRODUZIONE DELLA

AUTOMATION AND ING-INF/04 LEZIONI 60 ANTONIO BICCHI DRIVERS B DANILO CAPORALE

Obiettivi di apprendimento

Conoscenze

Il corso si propone di fornire agli studenti ed alle studentesse gli elementi fondamentali della modellistica e del controllo di sistemi, impianti e macchine utilizzate nei processi industriali della carta e del cartone. Lo scopo è quello di rendere il comportamento dei sistemi dati conforme a specifiche di funzionamento assegnate.

Modalità di verifica delle conoscenze

Discussione orale, con la possibilità per lo studente di presentare un elaborato personale dove gli strumenti delcorso vengono applicati ad un realistico caso applicativo

Capacità

Al termine del corso, lo studente/la studentessa saprà

- riconoscere le caratteristiche dei sistemi dinamici (lineari e non lineari), conoscere il concetto di stato e le proprietà dei sistemi lineari, nonché i concetti di equilibrio e stabilità;
- linearizzare un sistema nonlineare attorno ad un suo equilibrio;
- analizzare l'andamento in evoluzione libera e forzata dei sistemi lineari stazionari a tempo continuo;
- passare dalla rappresentazione matematica nel dominio del tempo di un sistema dinamico a quella nel dominio della frequenza (trasformata di Laplace);
- utilizzare strumenti di analisi quali i criteri algebrici di stabilità, i diagrammi di Bode, i diagrammi di Nyquist ed il luogo delle radici utili ai fini del progetto di un controllore;
- tradurre le specifiche statiche e dinamiche di funzionamento di un sistema dinamico espresse nel dominio del tempo in equivalenti (sotto opportune ipotesi) specifiche nel dominio della frequenza;
- progettare un controllore capace di rispettare le specifiche statiche e dinamiche di funzionamento.
- utilizzare il software Matlab ai fini della verifica di funzionamento di sistemi dinamici e del progetto del controllore.

Modalità di verifica delle capacità

Lo studente dovrà dimostrare la capacità di usare gli strumenti software utilizzati durante il corso. Gli esercizi ricopriranno le tematiche necessarie a valutare le capacità oggetto del corso ed in particolare l'analisi di sistemi dinamici e il progetto di un controllore in grado di soddisfare a specifiche di funzionamento desiderate.

Comportamenti

Al termine del corso lo studente/la studentessa sarà in grado di analizzare le caratteristiche principali dei sistemi dinamici con particolare dettaglio per i sistemi lineari stazionari a tempo continuo e di progettare un controllore nel dominio delle frequenze con tecniche che si avvalgono di strumenti quali il luogo delle radici ed i diagrammi di Bode.

Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

Modalità di verifica dei comportamenti

La verifica dei comportamenti avviene attraverso una approfondita discussione durante l'esame orale.

Prerequisiti (conoscenze iniziali)

Sistemi di equazioni differenziali lineari e non lineari, algebra delle matrici (autovalori ed autovettori, diagonalizzazione di matrici), fondamenti di fisica.

Corequisiti

Indicazioni metodologiche

Le lezioni e le esercitazioni vengono svolte attraverso la didattica frontale in aula con uso di lavagna e occasionale proiezione di lucidi o filmati. Saranno anche svolte lezioni ed esercitazioni in aule informatiche con l'ausilio di calcolatori. Le attività di apprendimento avvengono seguendo le lezioni e partecipando alle discussioni in aula.

Programma (contenuti dell'insegnamento)

- Presentazione del corso. Sistemi meccanici dinamici, sistemi di regolazione e di controllo nella automazione industriale e nelle macchine moderne.
 - (L:3; E:0)
- 2. **Definizioni e nozioni introduttive.** Sistemi dinamici continui e discreti. Esempi. Significato fisico di ingressi, uscite, stati. Schemi a blocchi. Proprietà dei sistemi: linearità, stazionarietà, fisica realizzabilità. (L:6; E:3)
- Sistemi lineari. Rappresentazioni di sistemi lineari (equazioni ordinarie, forma di stato, trasformate e funzioni di trasferimento).
 Soluzione dei sistemi lineari: risposte libere, forzate, transitorie e permanenti. Risposta armonica dei sistemi lineari. Diagrammi di risposta armonica (Bode, Nyquist).
 - (L:7; E: 4).
- 4. Specifiche di funzionamento dei sistemi regolati. Concetto e definizioni di stabilità. Motivazioni per la retroazione: reiezione dei disturbi, insensibilità agli errori di modellazione, modifica del comportamento dinamico. Specifiche di stabilità, specifiche sul regime e sul Verifica delle specifiche sul sistema regolato sulla base delle caratteristiche in anello aperto.
- Retroazione degli stati e retroazione delle uscite. Effetti della retroazione sulle proprietà fondamentali. Retroazione degli stati e retroazione delle uscite. Azioni e reti correttrici. Il luogo delle radici.
- 6. Sistemi a dati campionati. Campionamento di segnali e discretizzazione di sistemi dinamici continui: applicazioni alla simulazione e alla realizzazione digitale dei regolatori.
 - (L:6; E:4)
- Analisi e sintesi assistita da calcolatore. Uso di pacchetti SW commerciali per la analisi e la simulazione di sistemi dinamici (Matlab, Simulink).

(L:0; E:4)

Bibliografia e materiale didattico

- Katsuhiro Ogata, "Modern Control Engineering", Prentice Hall
- Antonio Bicchi. "Fondamentals of Automation Part I";
- Danilo Caporale, Silvia Strada, "Automatica Raccolta di esercizi risolti, con appendice MATLAB", 2015, Pitagora, ISBN 88-371-1915-1

Indicazioni per non frequentanti

Il corso è registrato e disponibile sui canali dell'ateneo

Modalità d'esame

L'esame si svolge oralmente, in presenza o in connessione remota. Nella discussion orale sarà data la possibilità allo studente di presentare un elaborato personale dove gli strumenti del corso vengono applicati ad un realistico caso applicativo

Stage e tirocini

-

Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

Pagina web del corso

https://www.centropiaggio.unipi.it/course/fondamenti-di-automatica

Altri riferimenti web

Codice team di Microsoft Teams dove viene svolta lezione:

pi936lu

Ultimo aggiornamento 25/02/2021 21:15

3/3