

Università di Pisa

LINGUAGGI DI PROGRAMMAZIONE CON LABORATORIO

ROBERTA GORI

Anno accademico 2022/23

CdS MATEMATICA
Codice 063AA

CFU

Moduli Settore/i Tipo Ore Docente/i

LINGUAGGI DI INF/01 LEZIONI 81 VINCENZO CIANCIA PROGRAMMAZIONE CON ROBERTA GORI

9

LABORATORIO

Obiettivi di apprendimento

Conoscenze

Gli studenti dovranno acquisire solide basi di conoscenza circa i principi della semantica operazionale e denotazionale, le tecniche per relazionare l'una con l'altra nel caso di linguaggi imperativi e funzionali di ordine superiore. Inoltre dovranno familiarizzare con i principi della semantica operazionale e astratta per algebra di processi concorrenti, con lai logica temporale

Modalità di verifica delle conoscenze

L'esame scritto servirà a verificare che gli studenti abbiano compreso il materiale presentato durante il corso e che siano in grado di organizzare e strutturare i concetti appresi in efficaci risposte scritte.

Metodi di verifica:

- · Esame scritto finale
- · Esame orale finale (facoltativo)

Capacità

Al termine del corso gli studenti dovrebbero essere in grado di dimostrare semplici proprietà formali di linguaggi e sistemi imperativi, dichiarativi, concorrenti In particolare dovrebbero essere in grado di applicare correttamente i più comuni principi di induzione e la teoria del punto fisso.

Modalità di verifica delle capacità

Esame scritto e orale.

Comportamenti

Alla fine del corso gli studenti dovrebbero essere in grado di comprendere e applicare sistemi logici e definizioni induttive, di definire la semantica di linguaggi di programmazione, e di ragionare su eventuali equivalenze e corrispondenze tra specifiche astratte.

Modalità di verifica dei comportamenti

Prerequisiti (conoscenze iniziali)

Non ci sono prerequisiti stringenti, ma ci si aspetta che gli studenti abbiano una buona familiarità con la matematica discreta, con le formule logiche del prim'ordine, con le grammatiche libere da contesto e siano in grado di comprendere frammenti di codice scritti in linguaggi imperativi.

Indicazioni metodologiche

Lezioni frontali e esercitazioni collettive.

Attività di apprendimento:

A DICAL ALL

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

- partecipazione attiva alle lezioni
- · domande e discussioni col docente
- assegnamenti di esericizi a fine lezione, da dscutere nella lezione successiva
- partecipazione al laboratorio
- studio individuale e a gruppi

Frequenza: fortemente consigliata

Programma (contenuti dell'insegnamento)

Introduzione di tre modelli computazionali differenti e studio delle loro proprietà formali principali (imperativo: IMP, funzionale: HOFL, processi concorrenti: CCS) accompagnati da principi di induzione e da metodi di dimostrazione. Attivita' di laboratorio:

Bibliografia e materiale didattico

Testo principale:

• Roberto Bruni, Ugo Montanari, "Models of Computation", Springer Texts in Computer Science, 2017.

Modalità d'esame

Metodi di verifica:

- · Esame scritto finale
- Esame orale finale (facoltativo)

Ultimo aggiornamento 02/08/2022 11:47