Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa Fluidodinamica

FULVIO CORNOLTI

Anno accademico 2020/21
CdS FISICA
Codice 289BB

CFU 6

Moduli Settore/i Tipo Ore FLUIDODINAMICA FIS/03 LEZIONI 48

FRANCESCO CALIFANO FULVIO CORNOLTI WALTER DEL POZZO

Docente/i

Obiettivi di apprendimento

Conoscenze

Descrizione della cinematica dei mezzi continui, fondamenti delle equazioni costitutive della dianamica dei mezzi contimui, trasporto in mezzi continui semplici e non. Equazioni di Navier-Stokes. Applicazioni illustrative in diversi campi della fluidodinamica: problema della portanza, onde sonore, onde di gravità, instabilità del suono, onde semplici, onde d'urto

Modalità di verifica delle conoscenze

Esame orale su appuntamento: consiste in un colloquio tra candidato e commissione sugli argomenti trattati durante le lezioni.

Capacità

Acquisizione delle strumentazioni matematiche tipiche della fluidodinamica e applicazioni a semplici problemi

Modalità di verifica delle capacità

Esame orale

Prerequisiti (conoscenze iniziali)

Analisi in più dimensioni, operatori differenziali, calcolo tensoriale, analisi complessa.

Programma (contenuti dell'insegnamento)

Il concetto di elemento fluido, limiti imposti dalla granulosità della materia: diffusione. Descrizione termodinamica delle forze di contatto: limiti di validità della ipotesi di LTE.

Cinematica dei mezzi continui come mappa a un parametro dello spazio in sé. Jacobiana e variazione di volume. Descrizione lagrangiana ed euleriano delle variabili fluide. La velocità in rappresentazione euleriana, tensore delle deformazioni infinitesime. Derivate di integrali di volume su domini mobili; superfici materiali e di controllo. Leggi di trasporto per grandezze estensive. Derivata materiale delle grandezze fisiche. Trasporto di massa per sistemi semplici, sistemi composti e sistemi con sorgente di materia; la

Università di Pisa

diffusione di massa macroscopica; alcuni esempi.

Trasporto della quantità di moto per sistemi semplici, e complessi.

Tensore del trasporto fluido e della diffusione macroscopica, parallelismo col tensore delle forze di superficie in teoria cinetica. Interpretazione microscopica della pressione e della viscosità.

Trasporto della energia cinetica. Trasporto della energia interna, contributo dei termini dissipativi. Trasporto dell' entropia nei fluidi, con diffusione di materia, calore e dissipazione: termini conservativi e termini irreversibili.

Equazione di Eulero per fluidi ideali in potenziali esterni.

Equilibrio dei fluidi stazionari. Stratificazione delle grandezze termodinamiche .

Fluidi in movimento: caso barotropico e isoentropico. La vorticità e il suo trasporto ideale. Funzione di Bernoulli e varie versioni del Teorema di Bernoulli. Alcuni esempi.

Alcuni teoremi sulla derivata di integrali di superficie e di linea su domini mobili. Teoremi di Thomson e di Kelvin sulla circuitazione della velocità. Trasporto della vorticità in fluidi ideali, nel caso 2D, comprimibile e non. Cenno ai teoremi di Helmoltz sui tubi di vorticità.

Fluidodinamica ideale incomprimibile 2D: potenziali della velocità e rappresentazione complessa. Teoremi di Blasius e Kutta-Joukowsky sulla portanza. Portanza sui profili alari in fluidi ideali: ipotesi di Joukowsky. Trasformazioni conformi e calcolo della portanza. Moto e stabilità di vortici lineari ideali.

Fluidi viscosi: il tensore di Cauchy. Equazione di Navier-Stokes per fluidi incomprimibili. Alcuni esempi. Lo strato limite in alcuni casi semplici. Raccordo asintotico. Lo scollamento dello strato limite nella teoria di Prandtl. Applicazione al calcolo della portanza di ala simmetrica.

Onde nei fluidi. Il suono in mezzi omogenei. Decadimento dissipativo delle onde sonore. Effetti non lineari: duplicazione di frequenza, interazioni a più onde, relazioni di Manley-Rowe per interazioni a tre onde. Rottura d'onda per onde ideali non lineari.

Onde semplici, solitoni dissipativi e dispersivi.

Sistema centralizzato di iscrizione agli esami Programma

Università di Pisa

Onde d'urto, adiabatica di Hugoniot. Onde di combustione e di detonazione.

Onde in mezzi disomogenei: cutoff e risonanza. .

Onde di superficie: instabilità di Kelvin-Helmoltz e Rayleigh-Taylor Approssimazione idrostatica; onde in acque poco profonde. Applicazioni.

Bibliografia e materiale didattico

Appunti del docente, Dinamica dei mezzi continui di Landau e Lifchitz

Modalità d'esame

Orale su appuntamento

Ultimo aggiornamento 02/08/2020 10:42

3/3