

Università di Pisa

PRINCIPI TERMICI I PER L'INGEGNERIA NUCLEARE

SANDRO PACI

Academic year 2020/21
Course FISICA
Code 815II
Credits 6

ModulesAreaTypeHoursTeacher(s)PRINCIPI TERMICI I PERING-IND/19LEZIONI48SANDRO PACI

L'INGEGNERIA NUCLEARE

Obiettivi di apprendimento

Conoscenze

Elementi di Termodinamica applicata, trasmissione del calore e meccanica dei fluidi applicati agli impianti nucleari di potenza

Modalità di verifica delle conoscenze

esame orale

Capacità

la verifica sarà centrata sul raggiungimente delle conoscenze minime necessarie per accedere alla laurea magistrale in Ingegneria Nucleare

Modalità di verifica delle capacità

L'esame consiste in una prova orale, ossia in un colloquio tra il candidato e il docente anche in forma di domanda/risposta, sui vari argomenti trattati nel corso.

Comportamenti

Il corso introduce gli aspetti di termodinamica e trasmissione del calore applicati a problemi di interesse alla tecnologia degli impianti nucleari. In aggiunta a questa parte, verranno trattati gli elementi di meccanica dei fluidi utili per la soluzione di problemi di moto di un fluido all'interno di un circuito idraulico.

Modalità di verifica dei comportamenti

esame orale

Prerequisiti (conoscenze iniziali)

Dai corsi di Matematica:

Derivate totali e parziali, semplici equazioni differenziali.

Dai corsi di Fisica:

Concetti di forza, lavoro e potenza, statica dei corpi rigidi, conservazione dell'energia meccanica;

Prerequisiti per studi successivi

Sostenere il corso di Principi Meccanci per l'Ingegneria Nucleare se si vuole proseguire con la Laurea Magistrale in Ingegneria Nucleare

Indicazioni metodologiche

Il corso ha una impostazione di tipo prevalentemente propedeutica ai successivi studi in ingegneria nucleare; le relative esercitazioni, sia pure sotto forma di brevi richiami, sono strettamente integrate nella teoria in modo che gli argomenti trovino immediata applicazione. Per quanto materialmente possibile, si cercherà di integrare l'attività in aula con lezioni fuori sede e seminari di esperti esterni.

Programma (contenuti dell'insegnamento)

Introduzione

Sistema centralizzato di iscrizione agli esami

Syllabus

Università di Pisa

Gli impianti nucleari ad acqua leggera ed i loro principali componenti. La conversione di energia da fissione e fusione in energia elettrica. Cenni alle altre tipologie di reattori nucleari.

Parte I - Termodinamica applicata

Prima legge della termodinamica, proprietà termodinamiche delle sostanze pure, diagrammi di stato (in particolare dell'acqua), modello di gas ideale e di gas reale. Analisi basata sul volume di controllo di un sistema termodinamico mediante l'uso delle equazioni di bilancio dell'energia e della massa: applicazione a differenti componenti di un impianto nucleare.

Equazione di Eulero e cenni a pompe centrifughe e turbine a gas e vapore.

La seconda legge della termodinamica.

Cicli termodinamici: sistemi con turbine a gas, sistemi con turbine a vapore, cicli ideali vs. cicli reali, semplice applicazione per la valutazione del rendimento termodinamico di un tipico impianto nucleare refrigerato ad acqua.

Parte II - Concetti di trasmissione del calore ed applicazioni

Richiami sui modi di scambio termico: conduzione, irraggiamento e convezione, concetto di resistenza termica.

Generazione del calore da fissione nucleare: reazione di fissione e differenti contributi alla generazione del calore, densità di potenza, potenza termica volumetrica, potenza termica lineare. Analisi della trasmissione del calore in una barretta di combustibile di un reattore nucleare di tipo PWR: configurazione della barretta di combustibile e dell'elemento di combustibile, proprietà termiche del combustibile nucleare, distribuzione radiale ed assiale della temperatura nella barretta di combustibile e nel refrigerante.

Scambiatori di calore: definizione dei termini relativi agli scambiatori di calore, equazioni di bilancio ed equazione di scambio termico, analisi degli scambiatori a tubi e mantello.

Esempi di condensatori e generatori di vapore impiegati negli impianti nucleari.

Parte III - Meccanica dei fluidi

Fondamenti di flusso monofase. Flusso di fluido viscoso ed incomprimibile: flusso in tubazioni, turbolenza e numero di Reynolds, perdite di carico, equazione di Bernoulli generalizzata, fattore di attrito, diagramma di Moody, semplici applicazioni a problemi di interesse per gli impianti nucleari.

Il docente userà il software MATLAB come ausilio per lo svolgimento dei problemi risolti in classe.

Bibliografia e materiale didattico

materiale didattico reso disponibile dai docenti durante il corso sul sito di e.learning del Dipartimento di Fisica (prof. Paci) primi 3 capitoli del manuale: Sandro Paci, "Introduzione ai sistemi nucleari", Pisa University Press.

Material didattico del Prof. Forgione

Indicazioni per non frequentanti

contattare i docenti via e-mail

Modalità d'esame

L'esame consiste in una prova orale, ossia in un colloquio tra il candidato e il docente anche in forma di domanda/risposta, sui vari argomenti trattati nel corso.

Pagina web del corso

https://elearning.df.unipi.it/course/view.php?id=336

Altri riferimenti web YouNuclear web site

Ultimo aggiornamento 08/05/2021 17:17

2/2