

Università di Pisa

METODI NUMERICI PER EQUAZIONI DIFFERENZIALI ORDINARIE

LEONARDO ROBOL

Anno accademico 2023/24

CdS MATEMATICA
Codice 067AA

CFU

Moduli Settore/i Tipo Ore Docente/i

METODI NUMERICI PER MAT/08 LEZIONI 48 LEONARDO ROBOL

6

EQUAZIONI DIFFERENZIALI ORDINARIE

Obiettivi di apprendimento

Conoscenze

Gli studenti acquisiranno conoscenze riguardanti i principali metodi numerici per la risoluzione di equazioni differenziali ordinarie e le loro proprietà fondamentali. Inoltre, svilupperanno la capacità di trattare problemi che derivano dalla modellizzazione matematica di fenomeni reali selezionando gli algoritmi più adatti per risolverli e di riflettere in modo critico e creativo sui risultati delle simulazioni numeriche da loro effettuate.

Modalità di verifica delle conoscenze

Durante la prova orale lo studente dovrà dimostare di aver acquisito conoscenze sui contenuti del corso utilizzando terminologia appropriata.

Capacità

Al termine del corso, lo studente avrà acquisito capacità riguardanti la scelta ed il corretto utilizzo di un metodo numerico per equazioni differenziali ordinarie.

Modalità di verifica delle capacità

Prova orale.

Comportamenti

Lo studente potrà acquisire sensibilità riguardanti la scelta di un metodo numerico e la analisi della accuratezza e della affidabilità delle approssimazioni da esso fornite.

Modalità di verifica dei comportamenti

Prova orale.

Prerequisiti (conoscenze iniziali)

È necessaria la conoscenza dei principali risultati teorici riguardanti le equazioni differenziali ordinarie e delle nozioni fondamentali di analisi numerica.

Programma (contenuti dell'insegnamento)

- 1. Metodi ad un passo, Eulero esplicito/implicito, Runge-Kutta.
- 2. Consistenza, stabilità e convergenza; il teorema di equivalenza per metodi ad un passo.
- 3. Regione di stabilità e funzione di stabilità.
- 4. Condizioni necessarie e sufficiente per la consistenza di ordine p per metodi RK.
- 5. Alberi radicati di Butcher.
- 6. Metodi di quadratura interpolatoria; polinomi ortogonali.
- 7. Costruzione di metodi RK impliciti tramite collocazione.
- 8. Caratterizzazione della stabilità per IRK di collocazione.
- 9. Approssimanti di Padé dell'esponenziale.

DICAL AND SE

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

- 10. Metodi lineari a più passi, definizione e proprietà.
- 11. Metodi di Adams, BDF.
- 12. Equazioni alle differenze.
- 13. Consistenza, stabilità e convergenza per metodi LMM.
- 14. Prima e seconda barriera di Dahlquist.
- 15. Metodi che preservano le strutture del problema: metodi di splitting, Lie-Trotter, Strang; metodi simplettici (cenni)

Bibliografia e materiale didattico

- · Course notes on Moodle.
- U. M. Ascher, L. R. Petzold, Computer methods for ordinary differential equations and differential-algebraic equations, SIAM, 1998.
- J. C. Butcher, Numerical methods for ordinary differential equations Wiley, 2016.
- E. Hairer, S. P. Nørsett, G. Wanner, Solving ordinary differential equations I, Nonstiff problems, Springer, 1993.
- E. Hairer, G. Wanner, Solving ordinary differential equations II, Stiff and Differential-Algebraic problems, Springer, 1996.
- G. H. Golub, G. Meurant, Matrices, moments and quadrature with applications, Princeton University Press, 2009.
- A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, Springer, 2010.

Indicazioni per non frequentanti

Non sussiste alcuna variazione per non frequentanti.

Modalità d'esame

Prova orale.

Ultimo aggiornamento 28/07/2023 18:44