

Sistema centralizzato di iscrizione agli esami

2023/24

Programma

Università di Pisa

CHIMICA FARMACEUTICA E TOSSICOLOGICA II

FEDERICO DA SETTIMO PASSETTI

Anno accademico

CdS CHIMICA E TECNOLOGIA

FARMACEUTICHE

Codice 028CC

CFU

Moduli Settore/i Tipo Ore Docente/i

CHIMICA FARMACEUTICA CHIM/08 LEZIONI 63 FEDERICO DA SETTIMO

9

E TOSSICOLOGICA II PASSETTI

CONCETTINA LA MOTTA

Obiettivi di apprendimento

Conoscenze

Il corso in oggetto si propone di fornire le fondamentali conoscenze sulla progettazione, sintesi, proprietà chimico-fisiche e tossicologiche, e utilizzazione di alcune classi di farmaci. Particolare attenzione sarà inoltre rivolta alla comprensione dei meccanismi d'azione a livello molecolare e delle relazioni fra struttura chimica e attività biologica dei farmaci trattati, al fine di fornire allo studente i fondamenti per la progettazione dei farmaci su basi razionali. Il corso si propone inoltre di fornire agli studenti la conoscenza di semplici metodi sintetici di classi e di singoli farmaci.

Modalità di verifica delle conoscenze

Esame individuale con prova orale.

Capacità

Congiuntamente agli altri corsi di Chimica Farmaceutica, ma anche di Farmacologia, il presente corso completa la formazione dello studente relativamente alle varie fasi che caratterizzano la ricerca e lo sviluppo dei farmaci, nonché alla comprensione delle basi razionali del loro utilizzo in terapia.

Modalità di verifica delle capacità

Durante la prova orale sarà verificata la capacità dello studente a collegare la struttura chimica del farmaco con la sua attività sul target biologico e le ricadute sulla sua applicazione terapeutica.

Comportamenti

Lo studente potrà acquisire e/o sviluppare sensibilità alle problematiche relative allo sviluppo di un farmaco.

Modalità di verifica dei comportamenti

Durante la prova orale verrà accertata l'acquisizione da parte dello studente delle problematiche relative a tutte le fasi di sviluppo di un farmaco.

Prerequisiti (conoscenze iniziali)

Propedeuticità: Chimica organica I.

Si consiglia di aver sostenuto anche l'esame di Farmacologia Generale.

Indicazioni metodologiche

Lezioni frontali con ausilio di slide.

Possibile attività seminariale con docenti esterni.

Programma (contenuti dell'insegnamento)

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

Anestetici locali. Punti chiave. Impieghi terapeutici. Varie forme di anestesia locale. Meccanismo e sede d'azione. Durata d'azione: aggiunta di vasocostrittori. Metabolismo. Modificazioni strutturali sulla molecola della cocaina. Struttura generale degli anestetici locali. Relazioni struttura-attività. Classificazione chimica degli Anestetici Locali. Benzocaina (s), Procaina (s), Tetracaina, Lidocaina (s) e suo metabolismo. Effetti collaterali degli anestetici locali.

Analgesici narcotici. Punti chiave. Il dolore. Recettori oppioidergici. Peptidi oppioidi endogeni. Presenza nell'oppio di alcaloidi di tipo fenantrenico ed isochinolinico. Struttura della morfina e considerazioni stereochimiche. Modello di interazione morfina/recettore mu. Morfina: profilo farmacologico. Tolleranza e dipendenza. Metabolismo della morfina. SAR della morfina. Antagonisti della morfina. Modifiche strutturali della morfina. Derivati della morfina (agonisti): codeina, diidrocodeina. Derivati oripavinici: Buprenorfina (s). Modello di interazione oripavine/recettore mu. Morfina: semplificazioni molecolari. Derivati del morfinano. SAR. Levorfanolo (s) e Destrometorfano (s). Derivati del benzomorfano. SAR. Fenazocina e Pentazocina. Derivati 4-fenilpiperidinici. SAR. Meperidina. Interazione meperidina/recettore mu. 4-Fenilpiperidine antidiarroici: SAR. Difenossilato e Loperamide. Piperidine-4-sostituite. Fentanile (s), Sufentanile. Fenilpropilammine. SAR. Metadone (s). Antagonisti degli analgesici narcotici. Struttura. Proprietà. Usi. Meccanismo d'azione. Naloxone (s) e Naltrexone (s). Altri analgesici oppioidi: Tramadolo e Tapentadolo.

Analgesici antipiretici antiinfiammatori (FANS). Punti chiave. L'infiammazione. cascata dell'acido arachidonico. Prostaglandine. Ciclossigenasi 1 e 2. Meccanismo d'azione. Effetti terapeutici. FANS: classificazione chimica. Salicilati: acido salicilico (s) e acido acetilsalicilico (s). Meccanismo d'azione acido acetilsalicilico. Diflunisal. Derivati dell'anilina. Paracetamolo. Derivati antranilici. SAR. Acido Mefenamico, Acido Flufenamico. Derivati pirazolidindionici. SAR. Fenilbutazone e Ossifenbutazone. Acidi arilacetici. Diclofenac (s). Indometacina: considerazioni strutturali, proprietà e sintesi. Sulindac e Tolmetina. Acidi arilpropionici. SAR. Ibuprofene (s), Naprossene, Ketoprofene e Ketorolac. Oxicami. SAR. Piroxicam (s). Arilsolfonammidi. SAR. Nimesulide (s). Inibitori selettivi della COX-2. Coxib. SAR. Celecoxib (s) e Rofecoxib.

Terapia del dolore. Cannabis Sativa. Struttura del Cannabidiolo, Cannabinolo e THC. Recettori dei Cannabinoidi. Agonisti sintetici: Nabilone, Dronabinolo. Agonisti endogeni: anandamide. Sativex: composizione chimica e applicazioni terapeutiche.

Farmaci antiparkinson. Punti chiave. Fisiopatologia del morbo di Parkinson. Modalita con cui può essere affrontata una terapia anti-Parkinson. Classificazione farmaci antiparkinson. Dopamina: biosintesi e metabolismo. Recettori dopaminergici. Levodopa (s). Inibitori periferici della Dopadecarbossilasi: Carbidopa e Benserazide. Inibitori delle MAO-B: Selegilina (s). Safinamide. Inibitori delle COMT: Entacapone. Agonisti dopaminergici: Apomorfina. Agonisti dopaminergici non ergolinici: Pramipexolo. Terapia anticolinergica. Triesifenidile.

Farmaci ipnotici e sedativi/ansiolitici. Punti chiave. Recettori del GABA. Trasmissione GABA-ergica. Recettore periferico delle Benzodiazepine (TSPO). Neurosteroidi. Agenti stroidogenici. Impieghi terapeutici dei farmaci sedativo-ipnotici. Classificazione. Sonno/insonnia. Benzodiazepine. Cenni storici. Meccanismo d'azione. Usi e impieghi delle benzodiazepine. Effetti collaterali. Metabolismo benzodiazepine. Classificazione in base alla durata d'azione. SAR. Modello di interazione. Clordiazepossido. Diazepam, Nitrazepam (s), Triazolam (s), Lorazepam, Ossazepam (s). Struttura e proprietà dei "Farmaci Z": Zolpidem, Zopiclone, Eszoplicone e Zaleplon. Agonisti al recettore della Melatonina: Ramelteon; struttura chimica e usi clinici. Agonisti al recettore 5-HT1A: Buspirone; struttura chimica e usi clinici. Altri farmaci: Etifossina.

Neurolettici. Punti chiave. Disordini mentali. Fisiopatologia ed eziologia della Schizofrenia. Ipotesi dopaminergica. Classificazione chimica dei farmaci neurolettici tipici ed atipici. Neurolettici tipici: meccanismo d'azione, effetti collaterali. Fenotiazine. SAR. Promazina, Clorpromazina, Perfenazina (s) e Flufenazina (s). Tioxanteni. SAR. Clorprotixene (s). Butirrofenoni. SAR. Aloperidolo (s). Difenilbutilpiperidine. Penfluridolo. Neurolettici atipici. Benzamidi. Metoclopramide e Sulpiride. 1,1-Piperazinildibenzazepine. Ipotesi serotoninergica. Clozapina e Loxapina. Cenni sui sali di Litio.

Farmaci antidepressivi. Punti chiave. La depressione. Ipotesi monoaminergica. Antidepressivi: effetti farmacologici. Classificazione farmaci antidepressivi: I e II generazione. IMAOs. Meccanismo ossidazione e inibizione MAO. IMAOs I generazione: Tranilcipromina (s). IMAOs II generazione: Selegilina, Clorgilina. IMAOs III generazione. Antidepressivi: inibitori delle COMT: Entacapone. Antidepressvi triciclici (Timolettici): meccanismo d'azione. SAR. Imipramina (s), Desipramina, Opipramolo. Antidepressivi II generazione: SSRIs. Meccanismo d'azione. SAR. Fluoxetina, Paroxetina, NARIs, SNARIs, NASSAs, Altri farmaci antidepressivi: Trazodone, Buspirone, Principali effetti collaterali. Farmaci attivi sul Sistema Nevoso Simpatico. Punti chiave. Sistema Nervoso Autonomo. Neuromediatori. Biosintesi e metabolismo noradrenalina e adrenalina. Attivazione simpatica. Recettori adrenergici. Modello di interazione noradrenalina/recettori adrenergici. Selettività recettoriale. Agonisti adrenergici: diretti, indiretti e misti. Alfa-agonisti diretti. Beta-feniletilammine. SAR. Adrenalina, Ossedrina (s), Fenilefrina. Imidazoline. SAR. Sintesi generale. Nafazolina. Clonidina (s). Adrenergici indiretti. Anfetamine: meccanismo d'azione, effetti farmacologici ed indesiderati. Anfetamina, Amfepramone e Fenfluramina. Alfa2-agonisti ad azione mista: Metildopa (s). Adrenergici diretti Beta1-agonisti: Dobutamina, Dopamina. Adrenergici diretti Beta2-agonisti a breve durata d'azione. Isoprenalina. Adrenergici diretti Beta2-agonisti a media durata d'azione. Salbutamolo (s). Adrenergici diretti Beta2-agonisti a lunga durata d'azione. SAR agonisti Beta2-adrenergici. Cromoglicato sodico (s). Antagonisti adrenergici: diretti, indiretti e misti. Classificazione Alfa-antagonisti adrenergici diretti. Beta-aloalchilammine. Meccanismo d'azione. Fenossibenzamina, Fentolamina. Alfa1-antagonisti selettivi: Chinazoline. Considerazioni strutturali. Prazosina. Tamsulosina. Beta-Antagonisti: derivati ariletanolamminici e arilossipropanolamminici. Sintesi generali. Considerazioni strutturali. Pronetalolo. Propranololo, Timololo. Arilossipropanolammine Beta1-selettive: Atenololo. SAR.

Farmaci attivi sulla trasmissione colinergica. Punti chiave. Sistema Nervoso Autonomo. Sistema Parasimpatico. Attivazione parasimpatica. Biosintesi e metabolismo Acetilcolina.Interazione Acetilcolina/AChE. Proprietà conformazionali. Recettori colinergici: recettori muscarinici e nicotinici. Interazioni Ach/recettori colinergici. SAR. Farmaci muscarinici. Agonisti muscarinici: usi clinici ed effetti collaterali. Agonisti muscarinici derivati dell'Ach: Betanecolo. Anticolinesterasici: reversibili ed irreversibili. Reversibili: Carbammati. Fisostigmina, Neostigmina. SAR. Interazione Neostigmina/AChe. Anticolinesterasici irreversibili: proprietà Dyflos. Meccanismo di interazione AChe/Dyflos. Riattivazione AChe: Pralidossima ioduro. Antagonisti muscarinici M1-selettivi: Pirenzepina. Meccanismo d'azione. SAR. Recettori nicotinici. Farmaci nicotinici: usi terapeutici.

Farmaci attivi sul sistema istaminergico e farmaci antiulcera. Punti chiave. Biosintesi e metabolismo istamina. Recettori dell'istamina. Chimica dell'istamina. Farmacoforo. Interazioni istamina/recettori istaminergici H1 e H2. Farmaci istaminergici ad azione diretta (agonisti e antagonisti) ed ad azione indiretta. Antagonisti H1: proprietà farmacologiche ed effetti collaterali. Sviluppo dei farmaci anti-H1: I, II e III generazione. Struttura generale. Classificazione chimica antagonisti H1. Derivati Etilendiamminici: Mepiramina. Derivati non etilendiamminici dell'anilina: Antazolina. Derivati dimetilamminopropilici: Clorfeniramina (s). Derivati Benzidrileterei: Difenidramina. Derivati Benzidrilpiperazinici: Oxatomide. Derivati Fenotiazinici: Prometazina. Antagonisti H1 non rientranti nei gruppi precedenti: Triprolidina e Ciproeptadina (s). Antagonisti H1 di II e III generazione: Terfenadina/Fexofenadina, Astemizolo/Norastemizolo, Cetirizina, Loratadina/Desloratadina. Antagonisti indiretti: Cromoglicato sodico. Antagonisti H2 e altri farmaci antiulcera. Anatomia e funzioni dello stomaco. Fisiologia della secrezione gastrica. Protezione gastrica. Patologie gastriche. Approcci terapeutici. Antimuscarinici M1-selettivi: Pirenzepina. H2-Antagonisti. Sviluppo degli

2/3

Sistema centralizzato di iscrizione agli esami

Programma

Università di Pisa

antagonisti-H2. Considerazioni strutturali. Cimetidina (s). Ranitidina (s). Famotidina. Struttura generale antagonisti-H2. Inibitori della pompa protonica (PPI). Sviluppo dell'Omeprazolo. Meccanismo di attivazione dell'Omeprazolo. Meccanismo d'azione. Metabolismo. Usi terapeutici. Lansoprazolo. Terapia contro Helicobacter Pylori.

Farmaci Antianginosi. Punti chiave. Cuore e principali patologie cardiache. Angina pectoris. Approcci terapeutici. Farmaci antianginosi. Nitrati organici. Meccanismo d'azione. Proprietà farmacologiche. Nitrito d'amile, Nitroglicerina, Pentaeritritolo tetranitrato (s). Effetti collaterali e tolleranza. Formulazioni. Coronarodilatatori. Idralazina. Diidralazina.

Calcio antagonisti. Punti chiave. Canali del Calcio. Effetti farmacologici ed usi terapeutici. Classificazione chimica dei Ca-antagonisti. Siti di legame e selettività tissutale. 1,4-Diidropiridine (DHPs). Considerazioni strutturali. SAR. Modello di interazione DHPs/canale del Ca. Proprietà terapeutiche ed effetti collaterali DHPs. Nifedipina (s). Benzotiazepine. SAR. Diltiazem (s). Modello farmacoforico Diltiazem. Fenilalchilammine. SAR. Proprietà terapeutiche fenilalchilammine. Verapamile (s).

Farmaci attivi sul sistema Renina-Angiotensina. Pressione arteriosa. Ipertensione e rischi associati. Meccanismi di regolazione pressione sanguigna. Sistema Renina-Angiotensina-Aldosterone. Enzima ACE e suo meccanismo proteolitico. Angiotensina II e suoi effetti sistemici. Classificazione farmaci antiipertensivi. ACE-inibitori. Meccanismo d'azione. Proprietà farmacologiche ed effetti collaterali. Classificazione chimica degli ACE-inibitori. Interazione ACE-angiotensina I. Sviluppo degli ACE-inibitori. Interazione Captopril/ACE. SAR. Captopril (s). ACE-inibitori: derivati carbossilici. Meccanismo d'azione. Interazione Enalaprilat/ACE. Enalapril, Lisinopril. SAR degli ACE-inibitori. Antagonisti recettoriali dell'Angiotensina II (Sartani). Recettori dell'Angiotensina II. Effetti sistemici Angiotensina II. Angiotensina II: punti farmacoforici. Sviluppo di antagonisti al recettore AT-1. Losartan (s). Derivati benzimidazolici: Candesartan. Eprosartan. SAR dei sartani. Meccanismo d'azione ed effetti collaterali sartani.

Nuovi farmaci anticoagulanti orali (NOA). Trombosi arteriosa. Il processo di coagulazione. Nuovi anticoagulanti orali (NOA). Siti d'azione. Apixaban, rivaroxaban, edoxaban e dabigatran. Interazione apixaban/fattore Xa. Proprietà di apixaban e rivaroxaban. Vantaggi e controindicazioni.

Farmaci ipolipidemizzanti. Punti chiave. Struttura e biosintesi colesterolo. Lipidi. Lipoproteine. Classificazione dislipidemie. Lipoproteine ed arterosclerosi. Terapia delle iperlipidemie. Inibitori sintesi colesterolo: Statine. Meccanismo d'azione. Effetti terapeutici ed effetti collaterali delle Statine. SAR. Classificazione statine in cinque generazioni. I generazione: Mevastatina, Lovastatina e Pravastatina. II generazione: Simvastatina. IV generazione: Atorvastatina. V generazione: Rosuvastatina. Resine leganti gli acidi biliari: Colestiramina e Colestipolo. Meccanismo d'azione. Usi terapeutici ed effetti collaterali.

Diuretici. Cenni generali. Impieghi terapeutici. Classificazione. Osmotici: mannitolo, sorbitolo, isosorbide; Inibitori Anidrasi Carbonica: acetazolamide (s), metazolamide, diclorfenamide; Derivati benzotiadiazinici: Clortiazide e analoghi; Clortalidone (s); Diuretici dell'Ansa: Furosemide, Bumetamide, Acido Etacrinico, Spironolattone, Triamterene, Amiloride (s). Meccanismi d'azione.

N.B. Dei farmaci contrassegnati con (s) viene illustrata anche la sintesi.

Bibliografia e materiale didattico

Testi consigliati

- _Gasco, Gualtieri, Melchiorre. Chimica Farmaceutica. Casa Editrice Ambrosiana
- _G. Patrick. Chimica Farmaceutica. EdiSES Università
- _Wilson e Gisvold. Chimica Farmaceutica. Casa Editrice Ambrosiana
- _O. Foye. Principi di Chimica Farmaceutica. Ed Piccin. Padova. Sesta edizione italiana.

Testi di consultazione

- _D. Sica, F. Zollo. Chimica dei composti eterociclici farmacologicamente attivi. Ed Piccin. Padova
- _Burger. Burger's medicinal chemistry and drug discovery. Interscience Ed. New York
- _Hansch. Comprehensive medicinal chemistry. Pergamon press Ed. Oxford
- _C.G. Wermuth Le applicazioni della Chimica Farmaceutica Ed SES. Napoli

Indicazioni per non frequentanti

Il corso ha frequenza obbligatoria.

Modalità d'esame

Prova orale.

Ultimo aggiornamento 17/04/2024 14:08