Modules | Area | Type | Hours | Teacher(s) | |
EQUAZIONI ALLE DERIVATE PARZIALI | MAT/05 | LEZIONI | 48 |
|
Ci si propone di fornire agli studenti una conoscenza parziale ma approfondita delle principali proprietà, e relative tecniche, di varie equazioni differenziali (in più variabili) che provengono dallo studio di importanti problemi fisici.
We intend to provide students with a partial but in depth knowledge of the main properties, and the related techniques, of various differential equations (in several variables) arisingin the study of important physical problems.
L'esame finale è orale. Lo studente sarà richiesto di discutere alciuni aspetti fra quelli illustrati a lezione, mettendo anche in luce il suo interesse per la materia.
The final exam is oral. The student will be asked to discuss some aspects among those illustrated in the lessons, also highlighting his interest in the subject.
Lo studente dovrebbe acquisire una buona padronanza della materia.
The student should acquire a good command of the subject.
L'esame orale consentirà di verificare le capacità dello studente.
The oral exam will allow to verify the student's abilities.
Per seguire il corso in modo proficuo lo studente dovrebbe aver preliminarmente seguito i corsi di base di Analisi matematica del primo biennio, ed in particolare avere una discreta conoscenza della teoria dell'integrale e dei fondamenti dell'Analisi funzionale.
In order to follow the course in a profitable way the student should have preliminarily followed the basic courses of mathematical analysis of the first two years, and in particular have a good knowledge of the theory of the integral and the bases of functional analysis
I - Richiami. Integrale di Lebesgue. Fubini-Tonelli. Convergenza dominata. Assoluta continuità dell'integrale. Misure di Radon. Spazi di Banach e Hilbert, operatori lineari, dualità, Hahn-Banach. Elementi di Teoria geometrica della misura: curve, superci, formule di Gauss-Green.
II - Equazioni modello. Eq. del trasporto, curve caratteristiche. Eq. di Laplace in due variabili. Eq. del calore in una variabile spaziale. Eq. della corda vibrante.
III - Analisi funzionale. Spazi L^p. Convoluzione. Mollicatori (Friedrichs e Gauss). Delta di Dirac. Derivate deboli e spazi di Sobolev. Spazi vettoriali topologici (cenni). Spazi D ed S e loro duali D' e S' (distribuzioni). Spazi di Sobolev con esponente negativo. Trasformata di Fourier su L^1. Formula d'inversione. Trasf. di Fourier su S, S' ed L^2. Paley-Wiener.
IV - Teoria generale delle EDP. Laplaciano in piu variabili: soluzioni fondamentali. Funzioni armoniche. Teor. della media. Principio del massimo. Eq. ellittiche di tipo generale: Problema di Dirichlet (cenni). Eq. del calore in piu variabili spaziali: soluzione fondamentale, Problema di Cauchy, stima dell'energia. Eq. astratte di evoluzione (cenni). Eq. di Schroedinger. Eq. delle onde nello spazio fisico: formula di Kirchhoff, velocita finita di propagazione, principio di Huyghens. Eq. iperboliche di tipo più generale: metodo dell'energia, buona positura negli spazi di Sobolev. Sistemi iperbolici secondo Hadamard. Sistemi simmetrici. Sistemi strettamente iperbolici: simmetrizzatore pseudo-differenziale (cenni). Equazioni di Maxwell.
I - Fundamentals. Lebesgue integral. Fubini-Tonelli thm. Dominated convergence. Absolute continuity of the integral. Linear operators between Banach spaces. Dual spaces. Hahn-Banach Basic facts of the geometric measure theory: curves, surfaces, Gauss-Green formulae.
II - Model equations. Transport equations. Characteristic curves. Laplace's equation in two variables. Heat equations in one space variable. String equation
III - Functional Analysis. Spaces L^p. Convolutions. Friedrichs and Gauss molliers. Dirac mass. Weak derivatives and Sobolev spaces. Topological vector spaces (outlines). Schwartz spaces D, S and their duals D', S' (distributions). Sobolev spaces with negative exponent. Fourier transform on L^1. Inversion formula. Fourier transform on S, S' and L^2. Paley-Wiener thm.
IV - General theory of PDE's. Laplacian in several variables. Fundamental solutions. Harmonic functions. Mean value theorem. Maximum priciple. More general elliptic equations. Dirichlet Problem (outlines). Heat equation in several space variables: fundamental solution. Wave equation in 3 spaces variables: Kirchho formula, nite speed of propagation, Huyghens principle. More general hyperbolic equations energy method, well-posedness in Sobolev spaces. Hyperbolic systems according to Hadamard. Symmetric systems. Strictly hyperbolic systems: pseudo-dierential symmetrizer (outlines). Maxwell's equations.
L. Evans, Partial Dierential Equations, Graduate Stud. Math. 19, AMS 1998.
S. Spagnolo, Appunti del Corso di EDP
L'esame è in forma orale. La frequenza alle lezioni è vivamente consigliata.
The exam is in oral form. Attendance at lessons is strongly recommended.