Scheda programma d'esame
QUANTUM LIQUIDS
MARIA LUISA CHIOFALO
Anno accademico2022/23
CdSFISICA
Codice382BB
CFU9
PeriodoSecondo semestre
LinguaInglese

ModuliSettore/iTipoOreDocente/i
QUANTUM LIQUIDSFIS/03LEZIONI54
MARIA LUISA CHIOFALO unimap
Obiettivi di apprendimento
Learning outcomes
Conoscenze

Quantum Liquids è un corso per il Dottorato in Fisica, mutuato per la LM in Fisica (versione da 9 CFU e da 6 CFU), e per la LT in Materials and Nanotechnologies (6 CFU). 

Al termine dell’insegnamento, la/lo studente avrà sviluppato conoscenze concettuali, procedurali e fattuali nella fisica dei liquidi quantistici. In particolare, avrà imparato a:

  • Conoscere il funzionamento di una “cassetta degli attrezzi” per concepire e realizzare in modo altamente controllato e accurato condizioni di forte correlazione nelle proprietà di carica/densità e/o di spin in liquidi quantistici, agendo su temperatura, dimensionalità, forza e range di interazione, introduzione di campi di gauge artificiali e dimensioni sintetiche;
  • Conoscere metodi teorici avanzati per predire e caratterizzare lo stato fondamentale e le eccitazioni di liquidi quantistici all’equilibrio e fuori equilibrio, metterli in relazione tra loro, e classificarli in base alla loro funzionalità per specifiche tipologie di problemi. Tra i metodi teorici sviluppati sono la teoria della risposta lineare, della misura e delle funzioni di correlazione, la fluidodinamica e l’idrodinamica quantistica, la teoria del funzionale di densità statico e dipendente dal tempo, la teoria delle funzioni di Green e loro approssimazioni autoconsistenti, la bosonizzazione in una dimensione, elementi introduttivi sui metodi per trattare sistemi quantistici aperti driven-dissipative, elementi conoscitivi per mettere in relazione questi metodi teorici con metodi di simulazione come Quantum Monte Carlo e Density-Matrix Renormalization Group, oggetto principale del corso di Laboratorio di Metodi Numerici.
  • Conoscere la fenomenologia dei liquidi quantistici nelle principali piattaforme sperimentali in cui vengono correntemente ingegnerizzati e utilizzati: quantum gases, circuiti a superconduttore, light fluids in cavità ottiche, sistemi a semiconduttore 2D. Cogliere l’utilità di queste piattaforme per lo studio di problemi di fisica della materia e di fisica fondamentale.
Knowledge

At the course end, the student will have developed conceptual, procedural, and factual knowledge on the physics of quantum liquids and fluids. In particular, the student will have developed:

(a)         Understanding and knowledge in operating the toolbox useful to conceive and realize in highly controlled and accurate manner conditions of extreme quantum degeneracy and correlations in the properties of charge/density and/or spin in quantum liauids, acting on temperature, dimensionality, strength and range of the interactions, introduction of synthetic gauge fields and dimensions;

(b)         Knowledge and understanding of advanced theoretical methods aimed to predict and characterize the ground state and the excitations in quantum liquids at and out-of equilibrium, link them in a conceptual map, and classify them according to their functionality to solve specific types of problems. Among the developed theoretical methods are the linear response theory, the theory of measurements and correlation functions, quantum hydrodynamics, static and time-dependent density functional theory, theory of Green's functions and related self-consistent approximations, bosonization (in one dimension), introductory elemenrs on methods suited to treat driven-dissipative open quantum systems, elements to relate these theoretical methods to the simulational methods treated in the course Laboratory for Numerical Methods, such as Quantum Monte Carlo e Density-Matrix Renormalization Group; 

(c)         Knowledge of the phenomenology of quantum liquids in selected experimental platforms where they are currently engineered, such as: quantum gases, superconducting circuits, light fluids in optical cavities, 2D semiconductor systems. Catch the usefulness of such platforms to investigate problems in condensed matter and in fundamental physics

Modalità di verifica delle conoscenze

La verifica è realizzata discutendo in una prova orale una dissertazione su un problema di fisica dei liquidi quantistici tra quelli non specificamente discussi nel corso e che faccia uso delle conoscenze e dei metodi teorici sviluppati durante il corso.

Assessment criteria of knowledge

The assessment is performed by oral discussion of an essay on problem in the physics of quantum liquids, selected among those that have not specifically treated within the course and that uses understanding and methods developed in the course.  

Capacità

Al termine dell’insegnamento lo/a studente avrà appreso a

  • Riconoscere nella complessità di comportamento fisico dei liquidi quantistici la semplicità delle proprietà macroscopiche, governate da leggi di conservazione e rotture di simmetria accompagnate da elasticità, modi dinamici a bassa frequenza e difetti
  • Organizzare e mettere in relazione questa conoscenza disciplinare in una stessa mappa concettuale con termodinamica, meccanica statistica e transizioni di fase, meccanica quantistica, teorie di campo, e struttura della materia nelle sue diverse realizzazioni
  • Connettere la comprensione concettuale e la formalizzazione del problema con la fenomenologia e i fatti sperimentali disponibili, e avere un'idea delle applicazioni; interpretare la fenomenologia in termini di pochi concetti e idee essenziali, e inferirne il funzionamento
  • Formalizzare i concetti e saperli trattare attraverso l'uso di uno o più tra i metodi sviluppati nel corso e relative procedure
  • Individuare la procedura più funzionale alla soluzione di un dato problema, eseguirla, e implementare le tecniche di calcolo apprese alle diverse procedure di soluzione
  • Valutare in modo critico articoli di ricerca specialistici sugli argomenti oggetto del corso
  • Ideare spiegazioni sul funzionamento di fenomeni di equilibrio e fuori equilibrio di liquidi quantistici nelle diverse piattaforme sperimentali
  • Comunicare in modo efficace ed efficiente conoscenze e idee sviluppate, utilizzando conoscenze di fisica di base
  • Lavorare con autonomia, consapevolezza della mappa concettuale e di quanto appreso, e capacità di autovalutazione
  • Lavorare in team
Skills

At the end of the course, the student will have learned to 

(a)         Recognize and appreciate in the complexity of the physical behavior of quantum liquids, the simplicity of their macroscopic properties, as governed by conservation laws and symmetry breaking accompanied by the appearence of new elasticities, low-frequency dynamical modes and defects

(b)         Organize and link in a relationship this disciplinary knowledge in a same conceptual map with thermodynamics, statistical mechanics and phase transitions, quantum mechanics, field theory, and structure of matter in its different realizations

(c)         Connect the conceptual comprehension and formal setting of the problem with the available phenomenology and experimental, and envisage the applications; intepret the phenomenology in terms of a few essntial concepts and ideas, and infer the understanding

(d)         Formalize the concepts and treat them according to the different methods and related procedures developed in the course

(e)         Select the best suited procedure to solve a given problem, execute it, and implement in the different procedures the learned calculation techniques

(f)          Evaluate with critical thinking specialized research articles on the course topics

(g)         Create understanding on equilibrium and out-of equilibrium phenomena in quantum liquids implemented in different experimental platforms

(h)         Communicate in effective and efficient manner the developed ideas and knowledge, using elementary physics concepts

(i)          Work in autonomous manner, developing awarness of the conceptual learning map, and build self-evaluation capacity

(j)          Work in team

Modalità di verifica delle capacità

La verifica è realizzata discutendo in una prova orale una dissertazione individuale e - in modo facoltativo - un lavoro di gruppo.

La dissertazione individuale è su un problema di fisica dei liquidi quantistici tra quelli non specificamente discussi nel corso e che faccia uso delle conoscenze e dei metodi teorici sviluppati durante il corso. Si richiede alla/o studente di individuare il problema oggetto della dissertazione:

  • in autonomia, con la supervisione della docente, in ogni caso sostenendo l’interesse e la curiosità dello/a studente
  • avendo cura che il problema includa la discussione della fenomenologia esistente, una analisi critica dello stato dell’arte, una trattazione metodologica teorica e/o simulativa, una applicazione in una o più piattaforme sperimentali, una discussione sui possibili sviluppi e prospettive

La verifica individuale è concepita in modo da valutare lo stato delle conoscenze dello/a studente, e di sviluppo di competenze nelle seguenti aree:

(a) aver compreso idee e concetti e saperli comunicare utilizzando conoscenze di fisica di base;

(b) saper formalizzare i concetti e saperli trattare attraverso l'uso di uno o più tra i metodi sviluppati nel corso e relative procedure;

(c) saper connettere la comprensione concettuale e la formalizzazione del problema con la fenomenologia e i fatti sperimentali disponibili, e avere un'idea delle applicazioni;

(d) autonomia, consapevolezza della mappa concettuale e di quanto appreso, efficacia ed efficienza nella comunicazione scientifica.

Il lavoro di gruppo è su un problema pratico relativo all’applicazione di idee e metodi appresi nel corso in una particolare piattaforma sperimentale per le tecnologie quantistiche – concordata con gli e le studenti. Il problema viene discusso in gruppo in una apposita sessione di esame utilizzando tecniche del team-based learning (questa sessione avrà luogo alla fine del corso). Si richiede di discutere  la metodologia più funzionale di trattamento, sviluppare la comprensione del problema, e comunicare i risultati,  conducendo le diverse attività attraverso una suddivisione di compiti,  condivisione dei risultati, e gestione autonoma del gruppo.   

Assessment criteria of skills

The assessment is performed by oral discussion of an essay on problem in the physics of quantum liquids, selected among those that have not specifically treated within the course and that uses understanding and methods developed in the course.  The student is required to identify the essay subject:

  • in substantial autonomy, though with the supervision of the lecturer, who will support student’s interests and curiosity
  • taking care that the selected problem inlcudes a discussion of the existing phenomenology, a critical analysis of the state of the art, a methodological (theory and/or simulation) treatment, the application to one or more experimental platforms, a discussion of implications and perspectives

The individual testing is conceived to assess the development of student’s knowledge and competences in the following areas:

(a) understand ideas and concepts and be able to communicate them also after using basic physics tools (besides advanced);

(b) be able to express concepts in formal manner and manage them via the methods developed during the course, along with the corresponding procedures;

(c) be able to connect the conceptual understanding of the problem and its formal expression with the phenomenology and experimental fact that are available, and envision possible applications;

(d) autonomy, awareness of the course conceptual map and of the learning outcomes, effectiveness and efficiency in scientific communication.

The group work is conceived to be on practical problem related to the application of ideas and methods learned during the course to either one among the different experimental platforms for quantum technologies. The problem will be selected by the students with the supervision of the lecturer. The problem will be discussed within the participating group in an on-purpose examination session operated by means of team-based learning techniques (this session will take place at the end of the course). It is required to discuss the methodology that is best suited to the problem, develop the comprehension of the problem, communicate the results, conduct the different activities by distributing the different assignments among the group members, sharing the results, and managing the group in autonomy.

Comportamenti

Ci si attende che la/lo studente sviluppi:

(a)  Interesse per le idee a fondamento della scienza e tecnologie quantistiche

(b) Curiosità e spirito critico

(c) Spirito di iniziativa e partecipazione attiva

(d) Correttezza al momento della valutazione

 

Behaviors

It is expected that the student will develop:

  • Interest for the ideas at the foundations of quantum science and technologies
  • Curiosity and critical thinking
  • Proactive participation
  • Fairness at the assessment time
Modalità di verifica dei comportamenti

La verifica del comportamenti viene operata in aula nel corso e in sede di prova d’esame mediante osservazione, e mediante possibili attività di valutazione formativa in itinere sul portale elearning.

Assessment criteria of behaviors

The behaviors’ evaluation is performed during classroom activities and at the assessment time via observation, and by means of possible activities of formative evaluation on the elearning portal.

Prerequisiti (conoscenze iniziali)

Prerequisito è la conoscenza di base di dinamica, termodinamica ed elementi di  meccanica statistica, elettromagnetismo, struttura della materia e meccanica quantistica acquisiti nel corso di studi triennale. Utili sebbene non indispensabili sono conoscenze di fisica dei solidi.

Prerequisites

Prerequisite is the basic knowledge of classical dynamics, thermodynamics and elements of statistical mechanics, electromagnetism, structure of matter, quantum physics.

Very useful and preferable, though not compulsory,  is the knowledge of solid-state physics

Indicazioni metodologiche

Le attività d’aula e online sono disegnate attorno agli obiettivi di apprendimento. In particolare:

  1. Lezione frontale. Si intende, per ogni argomento:

(a) discutere qualitativamente mediante la fisica di base le idee emergenti da fatti sperimentali ed esempi di vita quotidiana, approfondendo all'occorrenza metodi sperimentali e possibili applicazioni, anche utilizzando slides e spezzoni di seminari di esperti/e qualificati disponibii online ;

(b) formalizzare i concetti (conoscenza concettuale); 

(c) ovunque possibile discutere il problema complesso attraverso semplici modelli che usano la fisica di base;
(d) sviluppare e classificare la conoscenza di metodi teorici e di simulazione per le predizioni quantitative (conoscenza procedurale e fattuale), avendo cura di sviluppare alla lavagna tutti i passaggi per ogni tipologia di calcolo;

(e) al termine di ogni macro-argomento, costruire in modo interattivo una mappa concettuale che lo rappresenta, evidenziando concetti e relazioni tra questi;

(f) l’ultima parte del corso è dedicata a studi di casi in differenti piattaforme per le tecnologie quantistiche, allo scopo di acquisire pratica d'applicazione della conoscenza procedurale e fattuale

  1. Portale elearning. Contiene una organizzazione ragionata delle note estese di quanto fatto a lezione, slides, mappe concettuali, weblink utili a lezioni e colloqui offerti da altre istituzioni scientifiche qualificate (among which also ACP and KITP), oltre alle comunicazioni relative al corso e – se utile agli/lle studenti – l’uso del forum per discutere di argomenti del corso e del lavoro finale di gruppo.
  2. Seminari e colloqui possono essere offerti in forma facoltativa, svolti da esperte ed esperti in visita presso il Dipartimento
  3. Il lavoro di gruppo (facoltativo) a fine corso viene realizzato con la supervisione della docente
  4. L’essay per la prova d’esame viene preparato dalla/o studente con la supervisione della docente
  5. Il corso può essere in lingua inglese, in accordo con gli e le studenti
Teaching methods

Classroom and online activities are tailored on the expected learning outcomes. In particular:

  1. Classroom lecture. For each topic, the aim is to:
  • Qualitatively discuss by very basic physics concepts the ideas emerging from experimental facts and everyday-life phenomena, deepening – whenever useful – experimental methods and possible applications, even using slides and videoclips of online-available seminars by very specialized experts of that topic
  • Formal setting of concepts (conceptual knowledge);
  • Anywhere possible, discuss the more complex problem via simple models that make use of basic physics;
  • For each type of procedure, after developing the knowledge of theoretical and simulational methods for quantitative predictions by explicitly carrying out at the black/white/digital board all the needed steps of calculations, frame the abstract procedure (procedural knowledge);
  • At the end of each macro-subject, interactively build up a representative conceptual map, highlighting concepts and links among them;
  • The last course part is devoted to the study of cases from different platforms for quantum technologies, with the aim of practicing the folding down of conceptual and procedural knowledge towards factual knowledge.
  1. Elearning portal. It contains a reasoned and organized collection of detailed lecture notes, slides, conceptual maps, weblinks to selected lectures and colloquia offered by other qualified institutions (among which also ACP and KITP), besides communications related to the course and – for students’ use – the forum to discuss course topics and the final (optional) group work.
  2. Seminars and colloquia can be offered as optional resources, provided by experts scientists visiting the Physics Department.
  3. The (optional) group work at the end of the course is performed under the supervision of the course lecturer.
  4. The final exam student’s essay can be prepared under the supervision of the lecturer.
  5. The course can be delivered in English, in accord with all the students. For the course borrowed by Materials and Technology, this is a compulsory requirement (in the event students are not akin, the course will be split in two courses).
Programma (contenuti dell'insegnamento)

A. Introduction and conceptual map of the essential ideas qualitatively discussed via examples anticipated from the course itself

B. Measurements and correlation functions [4 h]

Generalities and essential concepts. Measurements and Correlation functions, Response functions, Quantum Hydrodynamics via a simple model.

C. TheoreticalMethods for strongly correlated quantum fluids [LM-Physics course: 40 h. PhD course: 28 h]. Development of theoretical methods, starting from the measurement of correlation functions which have been phenomenologically introduced in B. Discussion of the relationships among the different methods, enlightening goods and bads. The methods will be first developed in C1 for systems with maximal symmetry and then, after bridging in C2 with a crash dictionary on broken symmetries and quantum phase transitions, completed in C3-C5 by introducing their peculiarities in correspondence of phase transitions driven by tuning interactions strength, disorder, temperature, and dimensionality.

C1 Systems with maximal symmetry [LM course: 28h. PhD course: 20 h]

Only for PhD course: choose either C1.1 or C1.2

C1.1 Formal development of the Theory of Linear Response: Definitions and properties- Fluctuation Dissipation Theorem - Sum rules - Applications: calculation of response functions within the Random-Phase Approximation (fermions and bosons) - Concept of local field factor and self.-consistent theories beyond mean-field. Dictionary between response functions and Green’s functions methods [8 h]

C1.2 Correlation functions and Green's functions (zero and finite temperature): Definitions and properties - Boundary conditions - Equations of motion as a technique to derive consistent approximations - Non-equilibrium Green's functions - A dictionary with response functions - Generating functionals - Wick's theorem - Finite temperature and the contour-integral method - Perturbative techniques and Feynman diagrams - Examples including phonon and fermion systems to low-order – Methods based on  self-consistent integral equations. Dictionary between response functions and Green’s functions methods [8 h]

C1.4 Landau Fermi and Bose liquids [2 h]

C1.6 Quantum Hydrodynamics: Microscopic derivation of the equations starting from conservation laws - Transport coefficients as special limits of response functions and Kubo relations- Static susceptibilities as thermodynamic derivatives of conserved quantities. Relationship with Linear Response. Relationship with experiments: Landau-Placzek ratio and examples. [8 h]

C1.7 A crash dictionary of (Time-Dependent) Density Functional Theory: Definitions - Theorem of Hohenberg and Kohn - Kohn and Sham scheme - Local Density Approximation - Exchange and correlation potentials and relationship with linear response theory – Hints on current functionals and TDDFT, relationship with Linear Response and microscopic formulation of Navier-Stokes equations. [2 h]

During the development of the formal tools, care will be taken to establish and discuss links between the learned theoretical methods and simulational/numerical methods on one side and experimental methods on the other, with examples from different spectroscopies (matter, spin, and optical probes) and from transport measurements.

C2 A crash dictionary on broken symmetries and (quantum) phase transitions [2 h]

- Concept of order parameter- Landau and Landau-Ginzburg theory for uniform (Ising model) and non-uniform order parameter – Complex order parameter and neutral/charged superfluid – Introduction to the concepts of scaling, critical exponents and universality- Dynamical effects: Anderson-Higgs mechanism and Goldstone modes - Analogy between superconductivity and electroweak theory- Conditions of validity for mean-field theories and thermal and quantum (as e.g. due to correlations and reduced dimensionality) fluctuations

C3. Superfluidity/superconductivity and Bose-Einstein Condensation of neutral and charged Fermi and Bose systems [6 h].

Application of the theory of linear response to the microscopic calculation of the superfluid density/moment of inertia and the relationship between superfluid and condensate fraction – Peculiarities in hydrodynamic treatment and microscopic two-fluid equations – Peculiarities in the Green's functions treatment: Ward identities and conserving vs. gapless approximations.

Only for PhD course: choose either C4 or C5

C4. Effects of reduced dimensionality: the very special 1D case [2 h]-Specialty of 1D systems: always strongly correlated and collectivization of excitations. Luttinger Liquids: structure and thermodynamic properties. Typical phase diagrams in 1D systems with Charge/density and Spin-Density Waves. Essentials on bosonization techniques.

C5. Effects of disorder and quantum transport in 1D [2 h]. Transport properties of quantum fluids - Diagrammatic analysis and phenomenology - Quenched Green's functions - Scattering against disordered impurities – [Drude conductivity - Diffusion corrections] - Quantum corrections - Effect of dimensionality and quantum transport in 2D and 1D - AALK argument and Anderson localization -Universal conductance – Concept of many-body localization.

D. Cases study, selected in each of the following four different platforms for quantum technologies [6 h general topic + 6 h paradigmatic examples D1-D3, among which choosing one]:

D0. The basic toolbox (2 or 3-levels systems, interactions, gauge fields, and dimensionality) in the following quantum technologies platforms: quantum gases and trapped ions, superconducting circuits, matter and optical cavities, fluids of light [6 h].

D1. Paradigmatic examples: Engineering analogue quantum simulators in quantum gases and trapped ions [2 h]

D2. Paradigmatic examples: Engineering analogue-gravity simulators in quantum gases, fluids of light, and graphene [2 h]

D3. Paradigmatic examples: quantum metrology with quantum gases and trapped ions [2 h]

In each case, the toolbox available in each platform will be discussed, in relationship to the concepts and understanding developed during the course (superfluidity/superconductivity, reduced dimensions, (synthetic) magnetism and gauge-field physics, Anderson localization and many-body localization, charge and spin density waves, Mott insulators). A selection of interesting results will be presented, either aimed at the design of quantum devices and/or at fundamental physics applications. The selection will be decided with the students within a participatory process.

Syllabus

A. Introduction and conceptual map of the essential ideas qualitatively discussed via examples anticipated from the course itself

B. Measurements and correlation functions [4 h]

Generalities and essential concepts. Measurements and Correlation functions, Response functions, Quantum Hydrodynamics via a simple model.

C. TheoreticalMethods for strongly correlated quantum fluids [LM-Physics course: 40 h. PhD course: 28 h]. Development of theoretical methods, starting from the measurement of correlation functions which have been phenomenologically introduced in B. Discussion of the relationships among the different methods, enlightening goods and bads. The methods will be first developed in C1 for systems with maximal symmetry and then, after bridging in C2 with a crash dictionary on broken symmetries and quantum phase transitions, completed in C3-C5 by introducing their peculiarities in correspondence of phase transitions driven by tuning interactions strength, disorder, temperature, and dimensionality.

C1 Systems with maximal symmetry [LM course: 28h. PhD course: 20 h]

Only for PhD course: choose either C1.1 or C1.2

C1.1 Formal development of the Theory of Linear Response: Definitions and properties- Fluctuation Dissipation Theorem - Sum rules - Applications: calculation of response functions within the Random-Phase Approximation (fermions and bosons) - Concept of local field factor and self.-consistent theories beyond mean-field. Dictionary between response functions and Green’s functions methods [8 h]

C1.2 Correlation functions and Green's functions (zero and finite temperature): Definitions and properties - Boundary conditions - Equations of motion as a technique to derive consistent approximations - Non-equilibrium Green's functions - A dictionary with response functions - Generating functionals - Wick's theorem - Finite temperature and the contour-integral method - Perturbative techniques and Feynman diagrams - Examples including phonon and fermion systems to low-order – Methods based on  self-consistent integral equations. Dictionary between response functions and Green’s functions methods [8 h]

C1.4 Landau Fermi and Bose liquids [2 h]

C1.6 Quantum Hydrodynamics: Microscopic derivation of the equations starting from conservation laws - Transport coefficients as special limits of response functions and Kubo relations- Static susceptibilities as thermodynamic derivatives of conserved quantities. Relationship with Linear Response. Relationship with experiments: Landau-Placzek ratio and examples. [8 h]

C1.7 A crash dictionary of (Time-Dependent) Density Functional Theory: Definitions - Theorem of Hohenberg and Kohn - Kohn and Sham scheme - Local Density Approximation - Exchange and correlation potentials and relationship with linear response theory – Hints on current functionals and TDDFT, relationship with Linear Response and microscopic formulation of Navier-Stokes equations. [2 h]

During the development of the formal tools, care will be taken to establish and discuss links between the learned theoretical methods and simulational/numerical methods on one side and experimental methods on the other, with examples from different spectroscopies (matter, spin, and optical probes) and from transport measurements.

C2 A crash dictionary on broken symmetries and (quantum) phase transitions [2 h]

- Concept of order parameter- Landau and Landau-Ginzburg theory for uniform (Ising model) and non-uniform order parameter – Complex order parameter and neutral/charged superfluid – Introduction to the concepts of scaling, critical exponents and universality- Dynamical effects: Anderson-Higgs mechanism and Goldstone modes - Analogy between superconductivity and electroweak theory- Conditions of validity for mean-field theories and thermal and quantum (as e.g. due to correlations and reduced dimensionality) fluctuations

C3. Superfluidity/superconductivity and Bose-Einstein Condensation of neutral and charged Fermi and Bose systems [6 h].

Application of the theory of linear response to the microscopic calculation of the superfluid density/moment of inertia and the relationship between superfluid and condensate fraction – Peculiarities in hydrodynamic treatment and microscopic two-fluid equations – Peculiarities in the Green's functions treatment: Ward identities and conserving vs. gapless approximations.

Only for PhD course: choose either C4 or C5

C4. Effects of reduced dimensionality: the very special 1D case [2 h]-Specialty of 1D systems: always strongly correlated and collectivization of excitations. Luttinger Liquids: structure and thermodynamic properties. Typical phase diagrams in 1D systems with Charge/density and Spin-Density Waves. Essentials on bosonization techniques.

C5. Effects of disorder and quantum transport in 1D [2 h]. Transport properties of quantum fluids - Diagrammatic analysis and phenomenology - Quenched Green's functions - Scattering against disordered impurities – [Drude conductivity - Diffusion corrections] - Quantum corrections - Effect of dimensionality and quantum transport in 2D and 1D - AALK argument and Anderson localization -Universal conductance – Concept of many-body localization.

D. Cases study, selected in each of the following four different platforms for quantum technologies [6 h general topic + 6 h paradigmatic examples D1-D3, among which choosing one]:

D0. The basic toolbox (2 or 3-levels systems, interactions, gauge fields, and dimensionality) in the following quantum technologies platforms: quantum gases and trapped ions, superconducting circuits, matter and optical cavities, fluids of light [6 h].

D1. Paradigmatic examples: Engineering analogue quantum simulators in quantum gases and trapped ions [2 h]

D2. Paradigmatic examples: Engineering analogue-gravity simulators in quantum gases, fluids of light, and graphene [2 h]

D3. Paradigmatic examples: quantum metrology with quantum gases and trapped ions [2 h]

In each case, the toolbox available in each platform will be discussed, in relationship to the concepts and understanding developed during the course (superfluidity/superconductivity, reduced dimensions, (synthetic) magnetism and gauge-field physics, Anderson localization and many-body localization, charge and spin density waves, Mott insulators). A selection of interesting results will be presented, either aimed at the design of quantum devices and/or at fundamental physics applications. The selection will be decided with the students within a participatory process.

Bibliografia e materiale didattico

Note:

  1. Sul portale elearning del corso, per ogni argomento sono:
  • le note dettagliate delle considerazioni e dei calcoli svolti a lezione
  • altro materiale (link, note, eventuali onenotes di lavagna virtuale) con una guida ragionata all'uso della bibliografia consigliata (si veda di seguito)
  1. Saranno messe a disposizione le lezioni registrate
  2. Tutti i manuali di studio e gli articoli sono comunque disponibili presso la Biblioteca di Fisica e/o online.

5.1 Generali:
– P.C. Martin, Measurements and Correlation Functions, Gordon and Breach (1968) [Con riferimento al Programma: Parte B]

- G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid, Cambridge University Press (2010) [Con riferimento al Programma: Parte C1]

- Piers Coleman, Introduction to Many-Body Physics, Cambridge University Press (2015) [Con riferimento al Programma: Parte C2 e C3]

- L.P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin (1962) [Con riferimento al Programma: Parte C1- Nonequilibrium methods]

– Baym, Microscopic Description of Superfluidity, Math. Methods in Solid-State&Superfluid Theory, Clark&Derrick Eds., Oliver&Boyd (1969) [Con riferimento al Programma: Parte C4]

– P.C. Hohenberg and P.C. Martin, Microscopic Theory of Superfluid Helium, Annals of Physics 34, 291-359 (1965) [Con riferimento al Programma: Parte C4]

– Giamarchi, Quantum Physics in One Dimension, Oxford Science Pub. (2006) [Con riferimento al Programma: Parte C5]

- G. Iadonisi, G. Cantele, and M.L. Chiofalo, Introduction to Solid State Physics and Crystalline Nanostructures, Springer (2014) [Con riferimento al Programma: Background in solid-state physics]

- M. L. Chiofalo, L. Salvi, G. Tino, La Fisica della Materia, in Lezioni di Fisica, Corriere della Sera (2018) [Overview semi-divulgativa sulle quantum technologies]


5.2 Parti specifiche del corso (materiale facoltativo, in aggiunta alle note di lezione disponibili sul portale)

– G. Vignale, C. A Ullrich, S. Conti, Time-Dependent Density Functional Theory and beyond the Adiabatic Local Density Approximation, Phys. Rev. Lett. 79, 4878 (1997)

-- A. Daley, Quantum trajectories and open many-body quantum systems, Adv. Phys. 63, 77 (2014)


Altre letture, per studenti particolarmente interessati/e:

– P. Nozières and D. Pines, Theory of Quantum Liquids I – II, Westview Press (1999); Pines, The Many-Body Problem, Wiley (1997)

– D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, And Correlation Functions, Adv. Books Classics (1995)

– W.M. Foulkes, L. Mitas, R.J. Needs, and G. Rajagopal, Quantum Monte Carlo Simulations of Solids, Revue of Modern Physics 73, 33 (2001)

– U. Schollwok and S.R. White, Methods for Time Dependence in DMRG, in Effective Models for Low-Dimensional Strongly Correlated Systems, G.G. Batrouni and D. Poilblanc Eds., p. 155 AIP, Melville, New York (2006)

– L. A. Bloomfield, How Things Work, Wiley (2013)

Bibliography

Notes:

  1. The elearning portal contains, for each topic:
  • Detailed notes of discussions and step-by-step calculations carried out during classroom activity
  • Course materials (weblinks, notes, possible onenotes of the virtual whiteboard) accompanied by a reasoned guide to the use the suggested references (see below)
  1. The course videolectures will be made available
  2. All textbooks and articles are anyway available at the Physics and online UniPi libraries.

5.1 General:
– P.C. Martin, Measurements and Correlation Functions, Gordon and Breach (1968) [Referring to Programme: Part B]

- G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid, Cambridge University Press (2010) [Referring to Programme: Part C1]

- Piers Coleman, Introduction to Many-Body Physics, Cambridge University Press (2015) [Referring to Programme: Parts C2 and C3]

- L.P. Kadanoff and G. Baym, Quantum Statistical Mechanics, Benjamin (1962) [Referring to Programme: Part C1- Nonequilibrium methods]

– Baym, Microscopic Description of Superfluidity, Math. Methods in Solid-State&Superfluid Theory, Clark&Derrick Eds., Oliver&Boyd (1969) [Referring to Programme: Part C4]

– P.C. Hohenberg and P.C. Martin, Microscopic Theory of Superfluid Helium, Annals of Physics 34, 291-359 (1965) [Referring to Programme: Part C4]

– Giamarchi, Quantum Physics in One Dimension, Oxford Science Pub. (2006) [Referring to Programme: Part C5]

- G. Iadonisi, G. Cantele, and M.L. Chiofalo, Introduction to Solid State Physics and Crystalline Nanostructures, Springer (2014) [Referring to Programme: Background in solid-state physics]

- M. L. Chiofalo, L. Salvi, G. Tino, La Fisica della Materia, in Lezioni di Fisica, Corriere della Sera (2018) [Semi-popularized overview on quantum technologies]


5.2 Specific course parts (optional material, in addition to the lecture notes on the portal)

– G. Vignale, C. A Ullrich, S. Conti, Time-Dependent Density Functional Theory and beyond the Adiabatic Local Density Approximation, Phys. Rev. Lett. 79, 4878 (1997)

-- A. Daley, Quantum trajectories and open many-body quantum systems, Adv. Phys. 63, 77 (2014)


More readings, for especially interested students:

– P. Nozières and D. Pines, Theory of Quantum Liquids I – II, Westview Press (1999); Pines, The Many-Body Problem, Wiley (1997)

– D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, And Correlation Functions, Adv. Books Classics (1995)

– W.M. Foulkes, L. Mitas, R.J. Needs, and G. Rajagopal, Quantum Monte Carlo Simulations of Solids, Revue of Modern Physics 73, 33 (2001)

– U. Schollwok and S.R. White, Methods for Time Dependence in DMRG, in Effective Models for Low-Dimensional Strongly Correlated Systems, G.G. Batrouni and D. Poilblanc Eds., p. 155 AIP, Melville, New York (2006)

– L. A. Bloomfield, How Things Work, Wiley (2013)

Indicazioni per non frequentanti

Si consiglia di utilizzare al massimo delle potenzialità il materiale e le opportunità di verifica sul portale elearning di Fisica

Non-attending students info

Follow the material organized on the elarning page of the course

Modalità d'esame

La valutazione finale è il risultato della valutazione sull’essay e (in modo facoltativo) sul lavoro di gruppo. Per chi decide di partecipare al lavoro di gruppo, il 75% della valutazione è sull’essay, e il 25% sul lavoro di gruppo. Per chi non desidera partecipare al lavoro di gruppo, il 100% della valutazione è sull’essay.

Per entrambe le prove, la valutazione è formulata per competenze. Con riferimento alle aree (a)-(d) illustrata nella sezione Modalità di verifica delle capacità:

– fino a 18 punti per l'Area (a)

– fino a   6 punti per l'Area (b)

– fino a   4 punti per l'Area (c)

– fino a   5 punti per l’Area (d)

Assessment methods

The final assessment results from evaluating the essay and (optionally) the group work. For those who choose to participate to the group work, 75% of the evaluation is performed on the essay, and %25 on the group work. Who chooses to not participate to the group work, 100% of the evaluation is on the essay.

For both types of tests, the assessment is operated by evaluating competences. Referring to areas (a)-(d) in section Assessment of competences:

– up to 18 points for Area (a)

– up to   6 punti for Area (b)

– up to   4 punti for Area (c)

– up to   5 punti for Area (d)

Note

Il corso è concepito sia per studenti che vogliano specializzarsi nella fisica teorica della materia condensata che a studenti che vogliano acquisire una cassetta degli attrezzi concettuale e metodologica per comprendere la fisica dei liquidi quantistici e il funzionamento delle tecnologie quantistiche e apprendere a concepirne di nuove. Poiché diverse sono le piattaforme sperimentali dove le tecnologie quantistiche possono essere utilmente realizzate in forme differenti con funzionalità simili, la scelta del corso è privilegiare l'ampiezza di visione concettuale e metodologica nei primi 2/3 del corso, dedicando l’ultima parte alle implementazioni pratiche, che pure possono essere sempre approfondite  all’occorrenza.

Notes

The course is aimed to students who wishes to specialize their career in condensed matter physics and theoretical physics, AND to students who simply wish to complement their knowledge with respect to other specific fields. A specific choice of the course is to privilege a wider conceptual and methodological vision more than technical details, which can be deepened at any given and useful time.

Ultimo aggiornamento 29/07/2022 12:31