CdSFISICA
Codice380BB
CFU9
PeriodoSecondo semestre
LinguaInglese
Il corso presenta argomenti avanzati di strumentazione per radiazioni ionizzanti, con particolare attenzione alle applicazioni nella fisica nucleare e delle particelle, ma con esempi anche provenienti da altri campi.
Gli studenti acquisiranno la conoscenza delle moderne tecnologie dei sensori e della relativa elettronica e di come possono essere organizzati in un sistema di rilevamento. Verranno inoltre forniti esempi di come viene utilizzata la strumentazione avanzata nelle misurazioni fisiche.
The course presents advanced topics in instrumentation for ionizing radiation, with particular focus on application in nuclear and particle physics, but with examples also from other fields.
The students will acquire knowledge of modern sensor technologies and related electronics and of how they can be organized in a detector system. Examples of how advanced instrumentation is used in physics measurements will also be provided.
Le conoscenze verrano verificate attraverso la preparazione di una relazione basata su un argomento concordato seguita da un esame orale sugli argomenti del corso.
Knowledge will be tested through the preparation of a report based on an agreed topic followed by an oral exam on the course topics.
Valutazione quantitativa delle caratteristiche di un rivleatore di particelle. Progettazione di esperimenti di fisica delle particelle
Quantitative evaluation of the characteristics of a particle detector. Design of particle physics experiments.
La verifica delle capacità acquisite avviene attraverso le discussioni degli esercizi proposti per casa e durante le esercitazioni e tramite una relazione presentata al momento dell'esame.
Acquired skills are verified through the discussion of homework and classroom assignments and through a report presented during the final exam.
Lo studente imparera' a leggere e comprendere un articolo scientifico del settore e acquisira' sensibilita' per le problematiche della progettazione di rivelatori in fisica delle particelle.
The student will learn how to read and understand a scientific paper of the field and will acquire sensitivity for the problems of detector design in particle physics
La verifica dei comportamenti avvvera' atttraverso la discussione in classe durante il corso e la prova orale finale.
Behavious will be verified through discussions in the classroom during the lectures and during the final oral interview
Elettromagnetismo avanzato, meccanica quantistica e relatività speciale. Laboratorio di elettronica. Nozioni di base sull'interazione della radiazione con la materia. Si consiglia la frequenza al Laboratorio di Interazioni Fondamentali.
Advanced electromagnetism, quantum mechanics and special relativity. Electronics laboratory. Basics of interaction of radiation with matter. Attendance of Fundamental Interactions Lab advised.
Il corso è organizzato con lezioni in aula ed esercitazioni.
The course is organized with classroom lessons and exercise sessions.
-
Refresher: basics of detector tecnologies (6)
-
Refresher: Interactions of particles and matter
-
Signal formation by moving charges and Ramo theorem
-
Main sources and types of noise in detectors and amplifiers.
-
-
Tracking technologies (8)
-
Gas-filled detectors: MWPC, Drift chambers, TPC, RPC, GEMs and other MPGDs.
-
Semiconductor detectors: diodes, strip detectors, pixel detectors (hybrid and monolithic)
-
Track reconstruction and momentum measurement
-
-
Timing technologies (4)
-
Scintillation detectors: organic, inorganic; plastic, liquid, crystals
-
Fast semiconductor detectors
-
Time measurement techniques and applications
-
-
Particle Identification technologies (8)
-
Photon detectors: PMT, MCP-PMT, MA-PMT, PIN-diodes, SiPM
-
Cherenkov detectors: threshold, ring imaging, radiator types
-
Transition radiation detectors: basic mechanism
-
Techniques for particle identification: E/p, dE/dx, TOF, Cherenkov, penetration.
-
-
Energy measurement technologies (8)
-
Homogeneous detectors
-
Sampling calorimeters: readout methods, dual readout
-
Particle flow calorimeters
-
Techniques for energy measurement
-
-
Detectors for cosmic particles, neutrinos and exotic matter (6)
-
Large volume detectors: Cherenkov, liquid noble gas
-
Cold technologies: bolometers, superconducting tunneling junctions
-
Dark matter, axions detection techniques
-
-
Signal processing and data acquisition technologies (6)
-
Analog signal processing, readout and noise
-
Digitization and digital signal processing
-
Trigger and data acquisition systems
-
-
Some examples of large detector system/s (8)
-
Hadron collider.
-
Electron collider.
-
Fixed target.
-
Large volume.
-
-
Refresher: basics of detector tecnologies (6)
-
Refresher: Interactions of particles and matter
-
Signal formation by moving charges and Ramo theorem
-
Main sources and types of noise in detectors and amplifiers.
-
-
Tracking technologies (8)
-
Gas-filled detectors: MWPC, Drift chambers, TPC, RPC, GEMs and other MPGDs.
-
Semiconductor detectors: diodes, strip detectors, pixel detectors (hybrid and monolithic)
-
Track reconstruction and momentum measurement
-
-
Timing technologies (4)
-
Scintillation detectors: organic, inorganic; plastic, liquid, crystals
-
Fast semiconductor detectors
-
Time measurement techniques and applications
-
-
Particle Identification technologies (8)
-
Photon detectors: PMT, MCP-PMT, MA-PMT, PIN-diodes, SiPM
-
Cherenkov detectors: threshold, ring imaging, radiator types
-
Transition radiation detectors: basic mechanism
-
Techniques for particle identification: E/p, dE/dx, TOF, Cherenkov, penetration.
-
-
Energy measurement technologies (8)
-
Homogeneous detectors
-
Sampling calorimeters: readout methods, dual readout
-
Particle flow calorimeters
-
Techniques for energy measurement
-
-
Detectors for cosmic particles, neutrinos and exotic matter (6)
-
Large volume detectors: Cherenkov, liquid noble gas
-
Cold technologies: bolometers, superconducting tunneling junctions
-
Dark matter, axions detection techniques
-
-
Signal processing and data acquisition technologies (6)
-
Analog signal processing, readout and noise
-
Digitization and digital signal processing
-
Trigger and data acquisition systems
-
-
Some examples of large detector system/s (8)
-
Hadron collider.
-
Electron collider.
-
Fixed target.
-
Large volume.
-
D. Green - The physics of particle detectors - Cambridge U.P. (2000),
C. Grupen - Particle detectors - Cambridge U.P. (1996),
W.R. Leo -Techniques for nuclear and particle physics experiments - Springer-
Verlag (1994).
J.D. Jackson - Classical Electrodynamics - Wiley (1998),
T. Ferbel (ed.) - Experimental techniques in HEP - Addison Wesley (1987).
K. Kleinknecht - Detectors for particle radiation - Cambridge U.P. (1998).
H. Kolanoski, N. Wermes – Particle detectors – Oxford University Press (2020).
C.W. Fabjan, H. Schopper – Particle Physics Reference Library, Vol. 2, Detectors for
particles and radiation – Springer (2020) (https://www.springer.com/series/16489)
General reference: Particle Data Group - Review of particle physics – pdg.lbl.gov
D. Green - The physics of particle detectors - Cambridge U.P. (2000),
C. Grupen - Particle detectors - Cambridge U.P. (1996),
W.R. Leo -Techniques for nuclear and particle physics experiments - Springer-
Verlag (1994).
J.D. Jackson - Classical Electrodynamics - Wiley (1998),
T. Ferbel (ed.) - Experimental techniques in HEP - Addison Wesley (1987).
K. Kleinknecht - Detectors for particle radiation - Cambridge U.P. (1998).
H. Kolanoski, N. Wermes – Particle detectors – Oxford University Press (2020).
C.W. Fabjan, H. Schopper – Particle Physics Reference Library, Vol. 2, Detectors for
particles and radiation – Springer (2020) (https://www.springer.com/series/16489)
General reference: Particle Data Group - Review of particle physics – pdg.lbl.gov
The final exam consists of a written test and an oral examination.