Scheda programma d'esame
ISTITUZIONI DI ANALISI MATEMATICA
PIETRO MAJER
Anno accademico2016/17
CdSMATEMATICA
Codice135AA
CFU9
PeriodoSecondo semestre
LinguaItaliano
CdSMATEMATICA
Codice135AA
CFU9
PeriodoSecondo semestre
LinguaItaliano
Moduli | Settore/i | Tipo | Ore | Docente/i | |
ISTITUZIONI DI ANALISI MATEMATICA | MAT/05 | LEZIONI | 63 |
|
Programma non disponibile nella lingua selezionata
Learning outcomes
Knowledge
The student who successfully completes the course will be able to demonstrate a solid knowledge of Functional Analysis, with some relevant applications to partial differential equations.
Assessment criteria of knowledge
In the written exam the student must demonstrate his/her knowledge of the course material and and his/her ability to apply it in exercises.
In the oral exam the student must be able to demonstrate his/her knowledge of the course material and discuss it with propriety of expression.
Methods:
- Final oral exam
- Final written exam
Teaching methods
Delivery: face to face
Learning activities:
- attending lectures
- preparation of oral/written report
- participation in discussions
Attendance: Advised
Teaching methods:
- Lectures
Syllabus
The course will focus on:
- Hilbert and Banach spaces, with the relevant results (for instance, Baire Lemma, Hahn-Banach Theorem, Banach-Steinhaus Theorem, Banach-Alaoglu Theorem);
- Sobolove spaces, with the embedding and trace theorems;
- Spectral Theorem for self-adjoint operators;
- applications to partial differential equations.
Bibliography
H. Brezis. Analisi funzionale. Teoria e applicazioni. Liguori, Napoli, 1986.
Ultimo aggiornamento 14/11/2016 17:27